
Benchmarking urban eco-efficiency and urbanites' perception 
Ramana Gudipudia,⁎, Matthias K.B. Lüdekea, Diego Rybskia, Jürgen P. Kroppa,b

a Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, Potsdam, D-14412, Germany.
bDept. of Geo- and Environmental Sciences, University of Potsdam, Potsdam 14476, Germany

A B S T R A C T

Urbanization as an inexorable global trend stresses the need to identify cities which are eco-efficient. These cities
enable socioeconomic development with lower environmental burden, both being multidimensional concepts.
Based on this approach, we benchmark 88 European cities using (i) an advanced version of regression residual
ranking and (ii) Data Envelopment Analysis (DEA). Our results show that Stockholm, Munich and Oslo perform
well irrespective of the benchmarking method. Furthermore, our results indicate that larger European cities are
eco-efficient given the socioeconomic benefits they offer compared to smaller cities. In addition, we analyze
correlations between a subjective public perception ranking and our objective eco-efficiency rankings for a
subset of 45 cities. This exercise revealed three insights: (1) public perception about quality of life in a city is not
merely confined to the socioeconomic well-being but rather to its combination with a lower environmental
burden; (2) public perception correlates well with both formal ranking outcomes, corroborating the choice of
variables; and (3) the advanced regression residual method appears to be more adequate to fit the urbanites'
perception ranking (correlation coefficient about 0.6). This can be interpreted as an indication that urbanites'
perception reflects the typical eco-efficiency performance and is less influenced by exceptionally performing
cities (in the latter case, DEA should have better correlation coefficient). This study highlights that the socio-
economic growth in cities should not be environmentally detrimental as this might lead to significant discontent
regarding perceived quality of urban life.

1. Introduction

Cities, like organisms, are the outcome of numerous bottom up
evolutionary processes (Batty, 2012; Portugali, 2000). Thriving on 
natural resources, cities release pollution and waste as by-products. 
Harbouring more than 50% of the global population, contemporary 
cities generate 80% of the GDP while consuming approximately 70% of 
energy supply and releasing bulk of environmental pollution (UN, 
2014; Seto & Dhakal, 2014). Projected to be crucibles for humanity by 
the end of this century (Batty, 2013), contemporary cities are ac-
knowledged to play a pivotal role in global sustainability and climate 
change mitigation (Creutzig, Baiocchi, Bierkandt, Pichler, & Seto,
2015).

Addressing issues concerning global sustainability with cities as foci 
relies heavily on the way they transform their energy and material flows 
at a local scale (Kennedy et al., 2015). Studies on urban meta-bolism 
address such issues concerning long-term sustainability by fo-cusing on 
resource and energy flows in human settlements. These stu-dies can 
have practical implications in urban sustainability reporting, 
greenhouse gas (GHG) accounting, urban design and policy analysis

(Kennedy, Pincetl, & Bunje, 2011). The aim of sustainability according 
to previous studies on urban metabolism is to enhance socioeconomic 
outcomes in cities while reducing the resource inputs and environ-
mental pollution (Kennedy et al., 2011; Newman, 1999). Parallels can be 
drawn between this definition and the concept of eco-efficiency in cities 
as defined by the World Business Council for Sustainable Devel-opment 
(UNESCAP, 2011). Eco-efficiency couples economic and eco-logical 
performance of a city with an aim to improve socioeconomic outcomes 
while reducing environmental burden and waste production. Apart from 
a study by Kennedy et al. (2015) for 27 megacities and a study by 
Goldstein, Birkved, Quitzau, and Hauschild (2013) for 5 cities, the 
concept of urban metabolism is applied to very few cities globally 
largely owing to data constraints (Kennedy, Cuddihy, & Engel-Yan, 
2007; Minx et al., 2011).

This paper contributes to the current literature on urban metabolism 
by applying the concept of eco-efficiency to a large set of cities where 
consistent data is available. With an aim to identify the key factors 
determining urban eco-efficiency, we rank the performance of all con-
sidered cities. In order to achieve this aim, this paper merges the con-
cept of urban eco-efficiency with a well-established methodological
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procedure in operational research, called benchmarking.
The main objectives of this paper are twofold. The first objective is to 

rank the eco-efficiency of 88 European cities (which are amongst the 
100 most populated European cities) based on their socioeconomic and 
environmental burden/resource consumption indicators. The second 
objective is to investigate the relation between objective eco-efficiency 
rankings and subjective ranking of urbanites' perception about quality of 
life for a subset of 45 cities. Our analysis is innovative in three ways. 
Firstly, we use comparable data for a relatively large set of European 
cities. Secondly, we attempt the validation of objective eco-efficiency 
rankings using subjective perceptions of quality of life. Thirdly, we 
employ two non-parametric benchmarking methods to show which ci-
ties are eco-efficient, which involves extending the well-established 
regression residual ranking procedure to more than one socioeconomic 
indicator using a non-parametric rank aggregation algorithm. To the 
authors' knowledge, such an attempt is unprecedented considering the 
indicator space and transparency of the eco-efficiency ranking proce-
dures. The following subsections give an overview about the theoretical 
background of the two aforementioned objectives, literature review and 
the approach adopted in this paper.

1.1. Urban metabolism and factors influencing eco-efficiency in cities

Being a fundamental concept in developing sustainable cities, urban 
metabolism practically involves large scale quantification of energy and 
resource flows in cities (Kennedy et al., 2011). The seminal work of 
Wolman (1965) on city metabolism lead to copious research in this field. 
Kennedy et al. (2011) highlighted how this study resulted in two non-
conflicting schools of urban metabolism. One school addresses urban 
metabolism in terms of energy equivalents from a systems ecology 
perspective. The other describes urban metabolism in terms of life cycle 
assessments of material flow analysis from an industrial ecology 
perspective. Both these schools on urban metabolism involve city scale 
quantification of inputs and outputs of materials, natural resources and 
energy balances.

Newman coupled the environmental and material resource flows in 
cities with the socioeconomic aspects that determine livability in his 
extended metabolism model (Newman, 1999, Fig. 1). Similarly, 
Kennedy et al. (2007) stressed that urban metabolism is the summation 
of all the technical and socioeconomic processes that result in the 
growth and elimination of waste. Therefore, the goal of city sustain-
ability is to reduce undesirable environmental burden and waste pro-
duction while improving socioeconomic outcomes. Relating the desir-
able outcomes with undesirable by-products, eco-efficiency of a city 
determines the efficiency of the urban metabolism.

Urban metabolism and the subsequent eco-efficiency is influenced by 
a number of factors such as urban form and structure, quality of physical 
infrastructure, local climate, social, cultural and transportation priorities 
of urbanites and political economy (Gandy, 2004; Holmes & Pincetl, 
2012; Kennedy et al., 2007; Newman, 1999; Weisz & Steinberger, 2010). 
It is often challenging to have a consistent city level data covering all 
these aspects and therefore limited urban metabolism to a few case 
studies so far (Kennedy et al., 2007). As mentioned earlier, we address 
this issue by merging the concept of urban eco-efficiency with 
benchmarking for a set of 88 European cities where comparable data is 
available. Having its roots in operational research, bench-marking is 
defined as a process characterized by the systematic search for efficient 
procedures and best practices for complicated problems (Dattakumar & 
Jagadeesh, 2003; Elmuti & Kathawala, 1997; Moriarty,
2011).

The objectives behind previous applications of the benchmarking 
concept to cities varied significantly from identifying best practices with 
respect to: (a) urban competitiveness (Arribas-Bel, Kourtit, & Nijkamp, 
2013; Caragliu & Del Bo, 2015; Charnes, Cooper, & Li, 1989; Du et al., 
2014; Jiang & Shen, 2013; Kresl & Singh, 1999; Sáez & Periáñez, 2015), 
(b) urban infrastructure (Fancello, Uccheddu, &

Fadda, 2014; Hilmola, 2011; Le Lannier and Porcher, 2014; Marques, 
da Cruz, & Pires, 2015; Matas, 1998; Novaes, 2001; Pina & Torres, 
2001) and (c) urban energy consumption, sustainability and GHG 
emissions (Ahmad, Baiocchi, & Creutzig, 2015; da Cruz & Marques, 
2014; Dhakal, 2009; Hillman & Ramaswami, 2010; Jiang & Shen, 2010; 
Keirstead, 2013; Munksgaard, Wier, Lenzen, & Dey, 2005; Sovacool & 
Brown, 2010; Yu & Wen, 2010).

Obviously, the city rankings from the aforementioned studies de-
pend on two aspects: (1) the benchmarking method and (2) the choice of 
indicators. In this paper, we address the former aspect by choosing two 
non-parametric ranking algorithms for our eco-efficiency rankings. This 
enables us to search for robust properties of city rankings which are 
independent to subjective weightage of indicators. We address the 
aspect of choice of indicators in this study by analyzing correlations 
between objective eco-efficiency rankings and a subjective perception 
ranking about urban quality of life for a subset of 45 cities.

1.2. Quality of life in cities: subjective versus objective rankings

Cities bring people together, at the same location and time, to fulfil 
their functional/recreational needs, while city governments affect a 
range of activities to assist in the fulfilment of these needs (Grubler et 
al., 2013). In this regard, perceptions of quality of life, environment and 
ambient socioeconomic conditions reflect, in part, urbanites' views on 
the outcomes of city governance and performance.

Most quality of life city ranking studies focus solely on measure-
ments of objective conditions (Okulicz-Kozaryn, 2013), while previous 
analysis of links between objective measurement-based quality of life 
rankings and subjective perception rankings has proved inconclusive 
(Kelly & Swindell, 2002). Schneider (1975) argued that objective social 
indicators of quality of life in cities fail to capture urbanites' subjective 
perceptions and the work of Cummins (2000) and McCrea et al., (2006) 
is consistent with this view. However, a more recent work by Oswald 
and Wu (2010) concluded that there does exist a correlation between 
objective and subjective rankings. Further, studies in the behavioral 
sciences literature generally conclude that quality of urban life is best 
represented by a combination of subjective and objective components 
(Marans, 2015; McCrea, Shyy, & Stimson, 2006).

In analyzing correlations between subjective perception ranking and 
objective eco-efficiency rankings in this paper, our purpose is twofold. 
Firstly, we use subjective perception of quality of life to validate the 
choice of objective indicators used in this study. We interpret good 
correlation as a sign that reasonable indicator combinations have been 
chosen. Secondly, we use subjective perception to determine which 
ranking method best captures urbanites' perception about a city's per-
formance. It is expected that such an analysis might enable local deci-
sion makers in identifying the critical factors determining urbanites' 
perceptions about quality of life.

2. Data and methods

2.1. Data

A major pre-requisite for city benchmarking exercise is a consistent 
definition of cities. The EUROSTAT's Urban Audit data base1 available as 
a part of the new OECD-EC definition of cities (Dijkstra & Poelman, 
2012) enabled us to address this pre-requisite. Within this database, we 
identified three undesirable environmental burden/resource consump-
tion and two desirable socioeconomic indicators for the year 2011. The 
indicator selection in this study is based on those suggested by Newman 
(1999) in his “extended metabolism model”. We started the city se-
lection by looking at the 100 most populated European cities and 
identified 88 cities where data on all these five indicators are

1 Source: http://ec.europa.eu/eurostat/web/cities/overview
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available.2 In instances where a certain indicator for the year 2011 is not 
available, the value for the 2010 (or 2012) is considered. The po-
pulation size of the cities considered in this analysis varied sig-
nificantly. London is the most populous city considered in this study 
with a reported population of 8,173,941 inhabitants while Bonn is the 
least populated city with 324,899 inhabitants. The analysis includes 20 
cities with a reported population of more than a million. The mean 
population of the 88 cities considered in this analysis is 874,037 with a 
standard deviation of 994,701.

The environmental burden/resource consumption parameters that 
are included in this study are: (a) annual average NO2 concentration (in 
μg/m3) as an indicator for air quality, (b) annual solid waste generated 
(residential and commercial) per capita (in kilograms) as an indicator 
for resource consumption and (c) annual use of water per capita (in m3) 
as an indicator for environmental burden. The socioeconomic indicators 
that are used in this study include: (a) employment ratio (in percentage) 
and (b) GDP per capita expressed in purchasing power standard (PPS) 
which will be further referred to as GDP. Within these 88 cities, we 
identified a subset of 45 cities for which urbanites' perception about 
quality of life is also available. The indicator “I am satisfied to live in this 
city: Completely Agree” within the perception survey on quality of life 
for European cities for the year 2013 is used to analyze correlations 
between the urbanites' perception ranking and the eco-efficiency 
rankings.

Urban Audit database classifies cities into three spatial units: (1) 
‘city’ as local administrative unit, (2) ‘functional urban area’ which 
includes city and its commuting zone and (3) ‘greater city’ as an ap-
proximation of the urban centre which stretches far beyond its ad-
ministrative boundaries. Analyzing urban metabolism at spatial unit 
‘functional urban area’ (as defined in the OECD-EU city definition) in the 
Urban Audit Database3 will determine the broader factors influen-cing 
urban eco-efficiency. However, due to data unavailability, all the 
aforementioned indicators except the indicator GDP are obtained from 
the data available under the category ‘Cities/Local Administrative Units’ 
spatial units in the Urban Audit Database. The data on the GDP for these 
88 cities is obtained from the spatial unit ‘functional urban area’. The 
GDP reported here includes the income generated in the city together 
with its commuting zones. Since each city attracts commuters from 
neighboring towns which contribute to its GDP, this indicator provides a 
fair measure to depict GDP at city scale. Urban Audit data for European 
cities and a detailed description of the indicators used, their respective 
methodology can be found in the EUROSTAT Urban Audit website and 
methodological handbook (Eurostat, 2014). To our knowledge this is the 
best available, sufficiently large and consistent dataset which allows for 
an indication of the dimensions covering eco-efficiency of European 
cities. Table 1 shows the descriptive statistics of the indicators used in 
this study.

2.2. Methods

The methods currently used for city benchmarking in the state-of-
the-art research can be broadly divided into four categories: (a) per 
capita ranking measures (Dhakal, 2009; Kennedy, Ramaswami, Carney, 
& Dhakal, 2009; Sovacool & Brown, 2010) in one dimensional indicator 
space; (b) multiple criteria decision making based on normalized and/
or weighted measures (Boettle, Schmidt-Thomé, & Rybski, 2013; da 
Cruz & Marques, 2017; Jiang & Shen, 2013; Pinto, Costa, Figueira, & 
Marques, 2017; Singhal, McGreal, & Berry, 2013) in multi-dimensional 
indicator spaces; (c) ranking based on deviations in ordinary least 
squares regression analysis (OLS) and Stochastic Frontier Analysis 
(SFA) (Bettencourt, Lobo, Strumsky, & West, 2010; Castillo et al., 2005;

Glaeser & Kahn, 2010; Larivière & Lafrance, 1999; Matas, 1998; 
Reckien, Ewald, Edenhofer, & Lüdeke, 2007; Wang, Long, & Chen, 
2017; Yi & Fengyan, 2015) in one dimensional outcome space and 
multi-dimensional indicator spaces of independent variables and (d) 
ranking based on Data Envelopment Analysis (DEA) (Charnes et al., 
1989; Munksgaard et al., 2005; Raab & Lichty, 2002; Sueyoshi, 1992) i n 
multi-dimensional input and outcome indicator spaces.

Keirstead (2013) did a detailed review of all the existing city 
benchmarking methods. The study concluded that searching for robust 
properties of city rankings that enable ‘fair’ comparisons is reasonable 
while using non-parametric methods such as DEA and OLS. In all other 
cases, virtually each ranking can be constructed by an appropriate 
choice of the parameters weighting the different indicators. Therefore, 
we will use residuals in OLS and DEA to rank the eco-efficiency of the 88 
cities in this paper. Here, the ranking is solely generated by the 
properties of the indicator space and the chosen method. It is in this 
spirit that these ranking methods are considered to be non-parametric.

While the OLS method has its foundations in econometric theory, 
DEA is based on mathematical programming techniques (Bogetoft & 
Otto, 2011). In the OLS method, performance of each city with respect 
to each of its socioeconomic indicators (employment ratio and GDP) is 
compared with the average performance of cities with similar en-
vironmental variables. In DEA, a city's ranking is determined by com-
paring its performance with the best performing cities. While the DEA 
method can deal with multidimensional input and output spaces, the 
OLS method has been extended for that purpose as shown below.

2.2.1. City eco-efficiency rankings based on OLS and DEA
Eco-efficient cities maximize desirable socioeconomic factors re-

lative to associated environmental burden/resource consumption fac-
tors. Therefore, the former are treated as dependent variables and the
latter are considered as independent variables in the OLS ranking
procedure. The residuals with respect to each of the dependent vari-
ables in the linear regression manifold determine the eco-efficiency of a
city. The ranking of cities using OLS in this study follows two steps.

Firstly, we ranked the cities based on their residuals (V) for each
dependent variable separately (E: employment ratio and P: GDP/cap),
given their independent variables (N: NO2, W: solid waste production
and H: water consumption) as shown in Eq. (1) and Eq. (2).
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where, i = 1,…, 88 is the number of the city and Vi
p is the residual of

city i regarding P. The four parameters ßkp, k = 0, …, 3 are chosen to
minimize the sum of the squares of the residuals Vi

p over all cities (the
usual approach in multivariate linear regression).

Similarly, the residuals with respect to independent variable 2 i.e.
employment ratio are calculated as:
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where Vi
E is now the residual of city i regarding E and the parameters

ßkE, k = 0, …, 3 are chosen to minimize the sum of the squares of the
residuals Vi

E across all cities. The method compares each city to the
average performance which is reflected by the regression result. The
larger (positive) the value of the residuals Vi

P and Vi
E the better is the

eco-efficiency ranking of a given city. For further details on OLS
ranking method, see supplementary information.

Secondly, the rankings under both dependent variables are further 
aggregated into a consensus ranking using a branch and bound algo-
rithm (D'Ambrosio, Amodio, & Iorio, 2015). For further details see 
supplementary information. The result is a new ranking which is closest 
to the two original rankings. As far as we are aware, such a non-para-
metric approach to solving the problem of multidimensional outcomes 
in OLS is unprecedented. We refer to this consensus ranking as en-
hanced OLS ranking in what follows.

The efficiency of a city in DEA method is calculated based on the

2 Cities in the UK (except London) and Ireland (except Dublin) are not included in this
study because of lack of data on water consumption.

3 Source: http://ec.europa.eu/eurostat/web/metropolitan-regions/overview
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ratio of its outputs to its inputs. Since our objective is to characterize an
eco-efficient city by high socioeconomic measures and low environ-
mental burden, the former were considered as outputs and the latter
were considered as inputs in this study. DEA identifies the convex hull
in data space which is spanned by the efficient cities and ranks the
inefficient cities according to their (relative) distance to the hull. This
hull is a piecewise linear manifold. Efficient cities which span the hull
section an inefficient city is related to are called ‘peers’ (see Fig. 1 for
details). These are positive, efficient examples for the inefficient cities.
Changes in the indicator values necessary to reach the convex hull for
an inefficient city are called ‘slacks’. Slacks allow us to identify the most
critical dimension for improving efficiency. For further details please
refer to the supplementary information.

2.2.2. Methodological differences in ranking under OLS and DEA
Fig. 1 illustrates the key differences between these two approaches 

for benchmarking eco-efficiency in two dimensions for some hypothe-
tical values. The cities represented by the green dots span the convex 
hull and are efficient (rank 1) in DEA. The distance from this hull 
(dashed green lines) determines the rank of a city in DEA (the smaller 
the better). In OLS the positive deviation from the solid black regression 
line decides the rank of a city (the more above this line the better is the 
ranking).

City B (rank 1 in DEA) has only a small positive deviation from the 
regression line resulting in rank 8 in the OLS method – here the methods 
deviate significantly. City A is ranked first in both methods: it spans the 
convex hull and at the same time has the largest positive deviation from 
the regression line. City C lies even below the regression line (resulting 
in a low OLS rank of 14) but gets a relatively good rank

of 4 in DEA as there are only two other cities which are closer to the
convex hull (we define the rank of the closest non-hull city as 2). In the
chosen example city E has the most negative deviation from the re-
gression line and, at the same time, the largest distance from the convex
hull – so it is least ranked in both approaches. The red-dot cities with
the green circles illustrate a specific property of the DEA approach
which has no analogue in OLS. In DEA, cities F and B span the segment
of the convex hull these red-dot cities with the green circles are related
to. Therefore, cities F and B serve as peers or “reference cities” to these
cities.

3. Results

3.1. City ranking based on enhanced OLS method

As mentioned earlier, the OLS method ranks cities based on their 
residuals in the regression manifold. Fig. 2 shows the city rankings of the 
88 cities based on their residuals in employment ratio (Fig. 2.A) and 
GDP (Fig. 2.B). The results of the estimates (slopes) for the independent 
variables in the underlying multilinear regression are shown in Table 2. 
It can be inferred from Table 2 that the regression manifold is strongly 
and positively influenced by NO2 concentration followed by waste 
generation. This means that an average increase in GDP and employ-
ment will go together with an average increase in the NO2 concentra-
tion and waste generation. The weak R2 values shown in Table 2 depict 
the considerable variation amongst these cities with regard to the linear 
regression manifold which is the basis for our ranking. The 40 cities that 
deviate above the linear regression manifold with respect to GDP have 
an average GDP of 14,000 euros more than those cities that de-viate 
below the regression manifold (the average GDP of all the 88 cities that 
are considered in this study is 30,523 euros). Similarly, the 52 cities that 
deviate above the linear regression manifold with respect to 
employment ratio in relation to the environmental burden have an 
employment ratio of 10 percentage points more than those that deviate 
below.

The rankings of the cities with respect to each of these dependent 
variables varied significantly. For instance, the city of Brussels while 
being ranked 13th with respect to GDP, is ranked 76th with respect to 
employment. Similar variations in rankings are observed for Dublin, 
Warszawa and Paris. However, there are also cities which are ranked 
poorly in terms of GDP while being ranked well in terms of employment 
ratio. For instance cities like Vilnius, Tallinn, Bucharest and Sofia are all 
ranked relatively better in terms of employment while being ranked 
relatively poorly in terms of GDP. This result shows that the importance 
of using both GDP and employment ratio as socioeconomic indicators in 
eco-efficiency ranking.

The enhanced OLS ranking post the rank aggregation algorithm 
using branch and bound method yielded 4 different ranking permuta-
tions in which 2 permutations ranked cities from 1 to 88. The only 
difference between these ranking permutations is the ranking of Malaga 
which is ranked 88th in one permutation and 87th in the other. The

Table 1
Descriptive statistics of the indicators used in this study for the year 2011.

Indicator Category Average Minimum Maximum

NO2 concentration (in μg/m3) Environmental burden/resource
consumption

26.88 10.18 (Stockholm) 51.36 (Milan)

Waste generation (in kilograms per capita) Environmental burden/resource
consumption

467.2 239.38 (Sofia) 848.57 (Copenhagen)

Water consumption per capita (m3) Environmental burden/resource
consumption

75.52 35.53 (Szczecin) 155.69 (Oslo)

Employment ratio (%) Socioeconomic 87.23 68.6 (Malaga) 97 (Oslo)
GDP per capita (in purchasing power standard) Socioeconomic 30,523 9393 (Plovdiv) 51,382 (Munich)
“I am satisfied to live in this city: Completely Agree”

(% of urban population)
Urbanites' perception for 45 cities 45.33 20 (Palermo) 73 (Zurich)

Fig. 1. An illustration of the difference between OLS and DEA methods in two dimen-
sions. Ranking of the cities in DEA and OLS methods are shown in green and black colors
respectively. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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other two permutations ranked cities from 1 to 52 and 51 respectively 
(with ties in ranking). Since each of these permutations is Kemeny 
optimal (for further details refer to supplementary information), we 
considered the permutation which ranked cities without any ties. The 
results of the enhanced OLS method show that Stockholm, Munich, 
Bratislava, Oslo and Helsinki are the most eco-efficient cities. These 
cities perform better both in terms of employment and GDP. Malaga, 
Plovdiv, Palermo and Varna ranked as the least eco-efficient cities. 
These cities have either lower GDP or employment ratio compared to 
other cities. Enhanced OLS ranking all these 88 cities can be found in 
Fig. 4 (values on the Y-axis).

3.2. City ranking based on DEA method

The efficiency of a city in DEA method is calculated based on the 
ratio of a linear combination of its socioeconomic indicators to that of its 
environmental burden/resource consumption parameters. While the 
OLS method of residual ranking have unique city rankings (without

ties), the DEA method identified 23 cities which are ranked 1st. This is 
inherently because of the basic assumptions made under each method. 
As mentioned in Section 2.2, slacks determine the critical dimensions for 
improving efficiency of inefficient cities. Fig. 3 shows the ratio of slacks 
in each variable to their present value. It can be observed in Fig. 3 that 
the slack in GDP is a common factor determining inefficiency in most of 
the cities. The employment ratio in Brussels must be in-creased by 8% in 
order to be on the convex hull whereas NO2 con-centration in Poznan 
has to be decreased by 12% in order to be effi-cient. Plovdiv reportedly 
has a GDP of 9393 in PPS and has to increase its GDP by almost 300% in 
order to be an efficient city. Malaga, the least ranked city has to improve 
its GDP by 57% while decreasing its waste generation and water 
consumption by 35% and 7% respectively.

There are two caveats in the eco-efficiency ranking under the DEA 
method. The first caveat is ranking under this method allows ties. In our 
case, there are 23 cities which are ranked 1st under the DEA method. 
Literature in DEA has indicated methods such as super efficiency, cross 
efficiency and benchmark ranking method to further disentangle 
ranking of the efficient cities. However, each of these methods has their 
own set of assumptions which will influence the final ranking permu-
tation. For further details see (Markovits-Somogyi, 2011).

For instance, the benchmark ranking method determines the ranking 
of the efficient cities based on the number of inefficient cities they serve 
as a peer. In our analysis, Munich serves as a peer to 48 inefficient cities. 
Hamburg and Bucharest serve as peers to 31 and 29 inefficient cities 
respectively. Therefore, these cities can be considered as the most eco-
efficient cities under this method. Lodz, Warsaw, Dublin, Budapest and 
Rennes don't serve as peers to any inefficient cities except themselves. 
Therefore, there are still ties in this ranking permutation. Since the 
objective of this paper is to minimize subjective

Fig. 2. Eco-efficiency ranks for 88 cities based on their residuals in Employment (A) and GDP (B) under the OLS method. Cities are sorted based on their ranking from left to right.
Stockholm is ranked 1st with respect to employment while Munich is ranked 1st with respect to GDP. Malaga and Plovdiv are least ranked cities with respect to employment and GDP
respectively.

Table 2
Coefficients of each of the independent variables in OLS method.

Dependent
variable

Coefficients of the independent variables

NO2

concentration
(N)

Waste
generation
(W)

Water
consumption
(H)

Correlation
Coefficient
(R2)

Employment in % 0.268 0.002 −0.036 0.083
GDP (per capita in

PPS)
311.6 9.320 17.50 0.089
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choices regarding the methods, we continued our further analysis with 
the original DEA result including ties.

The second caveat is that DEA ranking is highly sensitive to outliers 
(Banker & Chang, 2006). This is the major drawback of this method 
especially with respect to city benchmarking exercises since researchers 
usually do not have any control on the measurement errors of the 
published data (in our case Urban Audit Database). Existing literature 
has identified two possibilities to address this issue. The first possibility 
is the usage of so-called partial frontier methods (Aragon, Daouia, & 
Thomas-Agnan, 2005; Cazals, Florens, & Simar, 2002). The second 
possibility is identifying various methods to detect and deal with the 
outliers. For instance, a study by De Witte and Marques (2010) com-
bined five complementary outlier detection procedures in one model to 
identify a broad range of atypical observations. Here, observations 
which are identified as outliers in at least two procedures are con-
sidered to be atypical. A detailed overview of methods to detect outliers 
in DEA are mentioned in (Ahamed, Naidu, & Reddy, 2015).

We addressed this issue in this paper in two steps. As a first step, we 
deleted one of the efficient cities and calculated the resulting eco-effi-
ciency rankings. As a next step, we analyzed the Kendall Tau's corre-
lation between the original ranking and the DEA result after deleting this 
city. Kendall Tau's correlation checks the number of concordant and 
discordant pairs within these two ranking permutations. Higher 
correlation signifies that the ranking permutations are almost similar 
while lower correlation signifies that the ranking permutations are 
dissimilar. We repeated that for all 23 efficient cities. Our results showed 
that the Kendall Tau correlation coefficient remained between 0.94 
(after deleting Munich) and larger than 0.98 for 21 other deletions. 
Since Munich is identified as an outlier in our study, we had a closer look 
into the rankings before and after deleting Munich. Regarding the

cities that span the convex hull, in this case, Munich is substituted by 
four inefficient cities in the original ranking. The relative ranking of the 
remaining inefficient cities in the original ranking remained exactly the 
same. This result shows that even the most pronounced outlier (Munich) 
has no significant influence on the interpretation of the re-sulting city 
ranking under DEA.

3.3. Comparison of enhanced OLS and DEA rankings

Fig. 4A compares the ranking of 88 cities in DEA and enhanced OLS 
methods and Fig. 4B shows the number of inefficient cities an efficient 
city in DEA serves as a peer. The objective of Fig. 4B is to depict that a 
majority of cities which are ranked well under both methods serve as a 
peer to many inefficient cities under DEA method. The Pearson's cor-
relation coefficient of the rankings under both methods is found to be 
0.64. With few exceptions such as Marseille, Barcelona and Madrid, the 
ranking of all the cities above 1 million population remained between 
medium to best under both methods. Although the number of cities with 
more than one million population represents approximately only a 
quarter of the number of cities considered in this study, this result 
suggests that large cities per se are not detrimental to the environment 
considering the socioeconomic benefits they offer compared to smaller 
cities. However, from a global perspective, European cities are rela-
tively small in terms of their population size. Although subject to data 
availability, there is a need to extend this analysis to global cities to 
further validate this finding.

The 10 best performing cities under the enhanced OLS method are 
ranked as the most eco-efficient cities under the DEA method (except 
Helsinki and Dusseldorf which are ranked 6th and 12th under the DEA 
method). A comparison of the individual rankings of the two methods

Fig. 3. Eco-efficiency ranking of inefficient cities
under DEA method. Prague is ranked 2nd and Malaga
is the least ranked city under this method. The bars
represent the percentage of slack per present value for
each input and output variables.
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revealed that cities such as Stockholm, Munich, Oslo, Bratislava and 
Zurich are ranked as the best performing cities irrespective of the 
method used. Therefore these cities are the most eco-efficient cities 
according to this study. Cities such as Malaga, Palermo, Napoli, Cordoba 
and Las Palmas are ranked poorly under both methods and can be 
considered as inefficient cities.

As mentioned in Section 2.2.1, the eco-efficiency ranking of a city in 
DEA is based on the ratio of its socioeconomic measures to its en-
vironmental burden. Therefore, despite performing poorly with respect 
to socioeconomic measures, a city can still be efficient if it has lower 
environmental/resource consumption compared to other cities. This is 
because the efficiency of such a city is measured against the convex hull 
which is a piecewise manifold. OLS ranks city eco-efficiency based on its 
positive residual compared to one linear manifold defined by all cities. 
Therefore, cities such as Szczecin, Lodz, Gdansk, Wroclaw, Warsaw are 
ranked as the most efficient cities under the DEA method while being 
ranked poorly in the enhanced OLS rankings. On an average basis, the 
per capita water consumption and waste generation in these cities is 
41% and 34% lower than all the other cities in this analysis. None of 
these cities serve as a peer for more than five cities under DEA method 
(Fig. 4B). Therefore these cities can be considered as cities in the 
periphery of the indicator space in the DEA method and the convex hull 
is determined mainly by these cities in that indicator space. However, 
with respect to OLS rankings, these cities have negative re-siduals either 
in employment or in GDP (see Fig. 2). Therefore, these cities are ranked 
poorly under the enhanced OLS method.

3.4. Comparison of public perception and objective city rankings

As a first step, we ranked each of the five indicators and the per-
ception survey results separately in descending order by their given

value. Cities which have higher NO2 concentration, generate more waste 
per capita, use more water per capita, have lower employment ratio and 
have a lower GDP are ranked last. As a next step, we ranked the eco-
efficiency of these 45 cities using the enhanced OLS and DEA method 
based on all indicators and correlated these seven rankings with the 
perception ranking.

The correlation between the rankings of environmental parameters 
to that of the perception ranking is found to be low compared to that of 
socioeconomic indicators (Table 3). The correlation of employment and 
GDP rankings is similar (0.48). We found that eco-efficiency rankings 
from enhanced OLS method to be strongly correlated with subjective 
perception ranking (0.61). Considering the ties in DEA ranking, the 
correlation between subjective perception ranking and DEA (0.47) is 
also relatively good. This result demonstrates that urbanites' perception 
about quality of life is determined by the combination of socioeconomic 
well-being and lower environmental burden. Further, we show that the

Fig. 4. Comparison of city rankings in DEA and enhanced OLS method. Each dot represents the ranking of a given city in enhanced OLS and DEA method respectively. The grey line (with
slope 1) in 4A shows how far the rankings agree under both methods. 4B shows that cities which are ranked well in OLS serve as a peer to many inefficient cities in DEA method.

Table 3
Results of the statistical analysis for the correlation between perception ranking with the
ranking of the variables and objective eco-efficiency rankings. p-Value significance codes:
0 = ***, 0.001 = **, 0.01 = *.

Variable Correlation
coefficient

p-Value 95% Confidence interval

Lower Upper

NO2 ranking 0.25 0.09 −0.04 0.51
Water ranking 0.21 0.16 −0.08 0.48
Waste ranking 0.03 0.82 −0.26 0.32
Employment ranking 0.48 0.00*** 0.22 0.68
GDP ranking 0.48 0.00*** 0.22 0.68
DEA ranking 0.47 0.00*** 0.20 0.67
Enhanced OLS

ranking
0.60 0.00*** 0.39 0.77
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correlation of perception ranking to enhanced OLS ranking is larger than 
that to DEA ranking indicating that urbanites' perceptions reflect the 
eco-efficiency performance of their city compared to the typical 
performance of similar cities. This result illustrates that urbanites' 
perception about quality of life in their city is less influenced by a city 
which performs exceptionally well (Munich for instance).

Since the OLS rankings are correlated the most to the perception 
rankings, we had a closer look at how the subjective perception ranking 
is interrelated to enhanced OLS rankings (Fig. 5). Our results show that 
there are three groups of cities. The first group consists of cities where 
perception rankings are in line with the enhanced OLS rankings. Cities 
like Zurich, Copenhagen, Stockholm, Helsinki and Munich which are 
amongst the top five best ranked cities with respect to urbanites' per-
ception are amongst the best ranked cities in enhanced OLS method. 
Similarly, cities such as Palermo, Napoli, Lisbon, Rome and Riga being 
the least ranked cities under public perception are also amongst the 
inefficient cities under OLS rankings.

The second group consists of cities which are ranked relatively better 
in the enhanced OLS method while being perceived poorly by their 
inhabitants. We observed such occurrences in almost all eastern and 
southern European cities where urbanites' perception is lower than those 
cities in western Europe. For instance, the city of Bucharest de-spite 
being ranked relatively well in the enhanced OLS ranking (15th) i s 
ranked very poorly (44th) in perception rankings (a meagre 21% of its 
inhabitants are completely satisfied to live in this city). Another ex-ample 
is the city of Bratislava which is also ranked well in enhanced OLS 
ranking (7th) while being ranked 15th in terms of urbanites' per-ception.

The third group belongs to cities such as Dublin, Warsaw and 
Gdansk. Despite being ranked poorly in the objective ranking, these 
cities are perceived relatively well (ranked 11th, 1 7 th and 18th 

respec-tively). Although the perception rankings of most of southern 
European cities are poor, the city of Malaga is found to be an 
exception. Despite being the least ranked city in enhanced OLS 
ranking (45th), the city stands 22nd with respect to perception 
rankings. Since this analysis is

done for a relatively smaller sample (45 cities), the slope of regression 
line depends on the few outliers (Malaga, Gdansk and Warsaw). In 
general, our results depict that public perception about the quality of life 
in western European cities is guided by the prevailing social, eco-
nomical and environmental dimensions. There seem to be other factors 
(for e.g. political) that influence the public perception in southern and 
east European cities.

4. Conclusion

City benchmarking studies such as those conducted by economic
intelligence unit EIU, 2017 available at https://www.eiu.com/public/
topical_report.aspx?campaignid=liveability17 (last accessed 20th 

November 2017) and the Mercer quality of living rankings available at: 
https://www.imercer.com/content/mobility/quality-of-living-city-
rankings.html (accessed 20th November 2017) usually attract a lot of 
attention ranging from the scientific community to general public and 
the media. These rankings can influence the scale and direction of 
public/private investment and inform urbanites' perception regarding 
the quality of life.

Broadly all environmental indicators used in this study reflect either 
the environment burden and/or resource consumption. The NO2 con-
centration can serve as a proxy for air pollution. For instance, road 
transport accounted for a major fraction (41%) of the NOx emissions in 
Europe in the year 2011 (European Environment Agency, 2014), a major 
fraction of which can be attributed to the urban areas. Waste generated 
and water consumption can serve as a proxy for resource consumption 
and environmental pollution in case a city lacks proper treatment and 
disposal facilities. City efficiency benchmarking is highly sensitive to the 
selection of the indicators which define efficiency and the data quality. 
The eco-efficiency ranking of the 88 cities considered in this study will 
differ when more cities and more/other indicators are used in the 
analysis. In both cases such an inclusion will influence the number of 
cities deviating from the regression manifold in OLS method and the 
convex hull in DEA method. However, the biggest challenge

Fig. 5. Comparison of enhanced OLS ranking with public perception ranking for the 45 cities. Each dot represents ranking of a given city in enhanced OLS ranking and urbanites'
perception ranking respectively.
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here is the consistency of the indicators used to define eco-efficiency of 
cities. Lack of consistent and reliable data constrained this study to only 
three environmental/resource burden and two socioeconomic in-
dicators.

Our results show that cities with well-established urban economies 
such as Munich, Stockholm and Oslo are eco-efficient irrespective of 
ranking methods. The results of this study corroborate the hypothesis 
that the stage of city development influences the metabolic process 
(Kennedy et al., 2007) and the subsequent eco-efficiency of a city. A 
majority of cities in southern and east European cities considered in this 
study face a bigger challenge to simultaneously improve their socio-
economic conditions while decreasing their environmental burden. In 
order to decrease their current environmental burden, local govern-
ments should adopt a combination of top-down and bottom-up strate-
gies. The top-down approaches include improving public transportation 
and encouraging non-motorized transportation in order to further de-
crease their NO2 (and GHG) emissions, renovating the water supply 
network with an aim to decrease transmission losses and adopting re-
duce, reuse and recycle strategies to decrease waste generation. From a 
bottom-up perspective, addressing urbanites' attitudes towards energy 
and resource consumption is crucial to decrease environmental burden. 
Breaking away from current consumption practices is also crucial to 
achieve sustainable development goals (SDGs) (Pradhan, Costa, Rybski, 
Lucht, & Kropp, 2017). With respect to improving socioeconomic out-
comes, a key entry point to improve their eco-efficiency is to develop 
and implement city specific green growth policies. The aim of these 
policies is to improve socioeconomic wellbeing in cities by improving 
investments in infrastructure and encouraging innovation while pro-
moting green services (such as efficient public transportation) and 
consumption (OECD, 2011).

Although this study captures the eco-efficiency of cities within their 
boundaries, it is crucial to mention that the embodied urban environ-
mental impacts (and GHG emissions) are not always confined to these 
boundaries (Pichler et al., 2017). For instance, factoring in cross-
boundary activities Hillman and Ramaswami (2010) found out that 
embodied emissions for eight cities in the USA on an average contribute 
to 47% more emissions in comparison to direct emissions within the city 
boundary. Subject to data availability, incorporating these embo-died 
environmental impacts will capture the factors leading to eco-ef-ficiency 
in a holistic manner. Such an analysis should incorporate ur-banites' 
lifestyles and attitudes towards energy/resource consumption as they 
play a predominant role in determining urban metabolism and eco-
efficiency (Minx et al., 2011).

Urbanites' perception about the quality of life in a city is crucial for 
any city benchmarking study. The findings of this study reinforce that 
urbanites' perceptions about quality of life in a city is not confined 
merely to the socioeconomic opportunities it offers but more towards 
the core vision of sustainable urban development. The higher correla-
tion between subjective perception and objective OLS rankings com-
pared to DEA rankings in this study points towards a crucial trait in city 
efficiency benchmarking. We showed in this study that city's in-
habitants do not compare their city with a best performing cities but 
rather to average eco-efficiency of similar cities.

In summary, the main results of the ranking and its interpretation are 
two-fold. Firstly, it is depicted that mature cities with well-estab-lished 
and diversified urban economies provide more socioeconomic 
opportunities and are found to be eco-efficient irrespective of the 
ranking method. Secondly, we show that urbanites' perception about 
quality of urban life reflects socioeconomic well-being coupled with 
lower environmental burden. Therefore, strategies to improve socio-
economic well-being in urban areas should not be environmentally 
detrimental as that will influence urbanites' overall perception about 
quality of urban life.

As cities play a pivotal role in ensuring global sustainability, we 
believe that the results showed in this study represent a step towards a 
scientific understanding of sustainable urban development. There are

two main areas which this study identifies as future research. Firstly, to 
analyze the progress of urban eco-efficiency using more comparable 
indicators as cities evolve in space and time. Secondly, to check whe-
ther such a progress in urban eco-efficiency is in accordance with local 
efforts in improving quality of urban life using more recent data on 
urbanites' perception.
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