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Inequality in the Distribution 
of Incomes 

A Microstatistical Approach Borrowed 
from Statistical Thermodynamics 
Gundolf H. Kohlmaier and Matthias K.B. Lüdeke 
J.W. Goethe Universitat, Frankfurt am Main, Germany 

The following article is an interdisciplinary attempt to bridge the gap between 
natural and socio-economic sciences. As the authors have their home base in 
physical chemistry and physics, the approach to economics is unorthodox. 

Wilfredo Pareto, the great economist who lived around the turn of the last 
century, is mostly known for his contributions to welfare economics. The 
classical goal of welfare economics is to find a measure of potential alternative 
economic states and select from them the optimum, both with respect to the 
optimal factor combination in the production function and the optimal product 
combination in the utility function of the consumer (e.g. see Henderson and 
Quandt, 1973). 

Pareto, however, is less well known for his work on the measured distribution 
of incomes and wealth among a given population, published by himself under 
the title, Courbe de la répartition de la richesse. The reason for this is perhaps 
due to the fact that no theoretical framework was established to explain, with ab 
initio principles, the profoundly unequal distributions of income and wealth 
which are to be found. Such textbooks as that by Samuelson and Nordhaus 
(1990), describe the issues surrounding the distribution of incomes as still the 
most controversial in all economics. A comparison of the abilities of individuals, 
with corresponding distributions of incomes, shows that abilities are much 
more equally distributed than income. Differences in education, in the chosen 
occupation or in social circumstances are often made responsible for unequal 
distribution, although the role of chance and luck affecting the individual's 
economic circumstances are not excluded (Samuelson and Nordhaus, 1990, p. 
651). 

We are particularly interested here in the process of the distribution of 
incomes which, through regular paychecks, is repeated within a chosen time 

This article is based on a paper presented at the First International Meeting on Ecological 
Economics in Washington, DC, 1990. The paper attempts to point out a principal approach to 
evaluate actually occurring distributions in economics and is thought to be more than a formal 
analogy to theoretical physics and chemistry. 

We thank Christof Hager for scientific support, Stefan Habermehl and Andreas Nadler for 
technical help and Dr R Hauser and K. Muller for providing statistics of incomes of the Federal 
Republic of Germany, East and West. 
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interval - i.e. every month or any other time span - which is short compared 
with the lifetime of an individual. For convenience, we keep the sum of all 
incomes constant in time. We want to derive an expression for the division of 
national income, here simply the sum of all incomes, for which all households 
within a given population compete. We will consider, in particular, two limiting 
statistical cases. In Case I, all households have identical characteristics and 
chances to participate in the next round of income distribution; in Case II, 
previous income history matters. We distinguish here two sub-cases: in Case 
II(a), households with previous higher incomes have a better chance to receive 
high incomes in the future as well; in Case II(b), households with previous 
differences in income tend to become more equal as time passes. 

Counter-intuitive to expectations, a Case I statistical distribution of national 
income among a large number of households does not lead to an equal 
distribution for all participants, but rather to a skewed distribution, where the 
lower percentile of the population shares an under-proportional fraction of the 
income, as is typical in nearly all Lorenz curves. 

Our model of Case I has a restricted analogy to the statistical physics of a 
large collection of identical molecules (households) which share a limited 
amount of total energy (total income), which is distributed among molecules in 
a number of energy states (income classes). The statistical weight Ω (formerly 
described by the symbol W from the German word Wahrscheinlichkeit) of such 
a distribution has been characterized by Boltzmann as: 

where N refers to the total number of molecules (households) and nj to the 
number of molecules (households) in a given energy state (income class). Ω 
characterizes a certain macrostate, in as much as it counts all distinguishable 
microstates which can be enumerated, as will be shown below, by conventional 
labelling, i.e. numbering the individual entities. 

Out of a large number of macrostates with different weights Ω, the one which 
leads to a maximum Ω is selected, under restricting conditions, so that the total 
number of particles and total energy is conserved. 

It is this quantity, Ωmax, that Boltzman could relate to the thermo-
dynamically-derived state function of entropy, S: 

S = kB1nΩmax (2) 

where kB is the Boltzmann constant in statistical physics. 
We shall find it convenient to determine Ω and Ωmax for economical problems 

as well; for purposes of distinction from the Boltzmann constant, we shall 
introduce an, as yet, undetermined constant kS (S standing for socio-economics) 
of dimensions of entropy. If, by external force, another equilibrium state can be 
maintained with Ω < Ωmax, and we remove the force, then the system will have 
a spontaneous tendency to go into the system with the higher statistical weight. 
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Identifying the final state with S2 (Ωmax), and the initial state S1 (Ω), we obtain 
the famous second law of thermodynamics which suggests that, for an isolated 
system, any spontaneous process will lead to an increase in entropy: 

S2-Sl=ΔS>0. (3) 
One of the main points to be made in the following article then, is that the 
income distribution within a population may have a statistical limit, which 
corresponds to an extremely unjust social situation. To obtain a socially more 
acceptable situation, several external societal forces may be necessary to 
maintain a more just distribution. 

The concept of entropy in the analysis of economic problems was first 
introduced by Georgescu-Roegen, in his well-known book, The Entropy Law 
and the Economic Process (1971). Although the basic roots of entropy within the 
framework of physics and philosophy, and its possible usefulness in economics, 
are covered very comprehensively here, very few practical applications for the 
evaluation of economic processes are given. Only much later do Faber et al. 
(1987) in their monograph, Entropy, Environment and Resources, address the 
economically important question of the environment as a source of the capital 
required for production, as well as a sink for waste products and its role in 
recycling of materials. 

There are still very great difficulties, however, in applying thermodynamics 
to economics other than to problems which relate to the production or 
consumption processes themselves. Here, analogies can be found to the 
processes which relate to physical or chemical systems which interchange, 
often through cleverly designed machines which exchange heat, work and 
material with the environment. For all other processes it seems that the entropy 
concept is introduced, a posteriori, in economic functions of interest. By 
contrast, we here try to derive distribution functions and relate these directly to 
entropy, using the microstatistical approach, without ever referring to the very 
difficult transformation of classical thermodynamic functions into 
corresponding economic functions. 

Setting the Stage: Representations of the Distribution in Incomes 
in Economics 
The most common representation of the distribution of incomes in a given 
population is the Lorenz graph where the cumulative fraction of incomes, 
beginning at the lowest end, is plotted against the cumulative fraction of 
households receiving these incomes. The Lorenz curve can always be derived 
from the distribution function F(ε, a1, a2,...) of the income ε (ε representing the 
first letter of the German word Einkommen, at the same time in physics 
representing the first letter of energy) and a given set of parameters a1 

Let:. 

F(ε, a1 a2...) (4a) 

D
ow

nl
oa

de
d 

by
 B

IB
L

IO
T

H
E

K
 D

E
S 

W
IS

SE
N

SC
H

A
FT

SP
A

R
K

S 
A

L
B

E
R

T
 E

IN
ST

E
IN

 A
t 0

5:
17

 1
9 

Fe
br

ua
ry

 2
01

6 
(P

T
)



International 
Journal of Social 
Economics 
20,10 

26 

be the distribution function of income ε and let: 
dN = F(ε)dε (4b) 

be the number of households in the income bracket between ε and ε + dε. The 
normalization condition yields that the total number of households, NT, is given 
by the integral from zero to infinity: 

while the number of households below and above ε. 

is given by the above expressions. Similarly, total income is given by the 
integral: 

while the total income below and equal to £• 

and the corresponding total income above c. 

is given by the corresponding expressions. It follows from the definition that the 
average income of a household is given by: 

In the Lorenz graph the cumulative fraction of income below and equal to ε is 
plotted versus the cumulative fraction of households below and equal to ε. 

As fractions appear in the income, the Lorenz expression is, of course, 
independent of the units used for income. 

For some purposes, illustrated below, it is more convenient to introduce: 
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This is a distribution function which is normalized to unity. The base case, 
which will be discussed in detail throughout this article, is the normalized 
exponential distribution function: 

f(ε;εβ) = βε-βε β>0 (9) 
where the parameter β characterizes the steepness of the exponential fall off. 
Within the Lorenz graph representation we can derive: 

and 

As both ε and β are positive, βε is always positive, and ê < , which is 
characteristic for any Lorenz curve. We also notice that the variable ε is always 
connected with β, β ε= x and can be thought of as a dimensionless reduced 
variable of income: 

x represents From equation (10) we can determine the inverse function, 
namely which we introduce in equation (11) to obtain: 

where ê (n) is now independent of the parameter β, which was eliminated in the 
transformation and which depended only on the product βε. The two limiting 
cases = 0, which yields ê(0) = 0, and = 1 which yields ê (1) = 1, are correctly 
represented by equation (13) as: 

We now derive the Gini coefficient for the exponential distribution: 
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This is a very interesting case, in as much as the exponential distribution 
apparently represents the watershed of all other distributions, extremes of 
which are a Gini coefficient of 0, for an identical income of all households, and a 
Gini coefficient of 1, for the extreme unequal distribution where the total income 
is concentrated in a few rich families. We note that the Gini coefficient of 0.5 for 
the exponential distribution is independent of the parameter β. An increase in 
the mean income, ε, remains unnoticed in the Lorenz graph representation. We 
suggest representing all other distributions, structurally different from the 
exponential distribution, by a generalized Maxwell-Boltzmann distribution: 

fn(ε; β, n) = Cnε(nl2-1)e-βε (15) 

where, in statistical physics, fn is a distribution function of energy ε among 
molecules with n degrees of freedom, in which n are integer numbers equal to 
or larger than one (see Appendix 1). As defined above, we shall here interpret ε 
as income, and n as a general parameter, which can be any real number above 
zero as then the corresponding integrals appearing in the Lorenz graphs are 
finite. The special case of the exponential function is represented by n = 2. The 
normalization constant Cn can be obtained from the definition of the Gamma 
function Γ in range of n > 0: 

and the integration of fn, within the limits of zero and infinity, and the 
substitution x = fie. 

We note in passing: 

The mean income for the Maxwell-Boltzmann distribution fn(ε; β, n), in n 
degrees of freedom, is given by: 

which reduces to equation (12) for the special case of an exponential 
function (n = 2). In Figure 1 we present the Maxwell-Boltzmann plot as a 
function of the (dimensionless) reduced income fie, which is particularly 
convenient as it is independent of the average income In Figure 2 we show the 
corresponding Lorenz plot, which again is only dependent on the parameter n, 
but not on 
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We note that, with increasing n, the Lorenz curve is increasingly approaching 
the line where all households have the same income. 

Determining the Maximum Statistical Weight 
It is a common method in physics, as well as in economics, to determine the 
maximum (or minimum) of a function of several variables under some 
restrictive boundary conditions by Lagrange's method. Here, we seek the 
maximum of Ω, or In Ω, respectively, because it represents the most likely 
macrostate in an equilibrium situation. Let nt be the number of households in 
the income class i and let the macro-distribution be characterized by the 
statistical weight Ω. of equation (1). With no restriction other than that the total 
number of households N within a population is constant, we introduce the 
implicit function: 

as the only boundary condition. The corresponding Lagrange function is then 
constructed by adding to lnΩ the function F, multiplied by the yet 
undetermined parameter A: 

L = lnΩ + λF. (19) 
L is then maximized, with respect to the number of households in each income 
class n1. 

and with respect to A: 

which gives back the original conditions of equation (18). 
The derivative of ∂ lnΩ/∂n1 can be evaluated in simple form if we consider, as 

in physics, Stirling's first order approximation: 
1n n! ≈ n 1n n-n (21a) 

which is valid for larger n. For smaller n we need to consider the second-order 
approximation: 

ln n! ≈ (n + 0.5) 1n n-n + 0.5 1n{2n) (21b) 
which gives excellent results even down to n - 2. 

From equation (20a) we obtain with the first-order approximation: 

n1 = e-λ+1) = const. 
which, along with conditions of equations (20b) or (3), respectively, leads to: 
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This implies an equal probability for all income classes. If, however, we 
introduce the second boundary condition, that the total income E of all 
households is restricted to a finite quantity and is constant, we need to consider 
an extended Lagrange function: 

L = 1nΩ+λF+ µG (23) 

where G is now the implicit function for income restriction: 

where ε1 is now the average income of class i. 
If, again, this new Lagrangian function is maximized we obtain the well-

known result of statistical thermodynamics, the Boltzmann distribution: 

where z is here the sum of states (Znstandssumme) up to level K: 

The parameter β determines the fall-off of the exponential; e-β gives the ratio of 
the number of households in two adjacent income classes: 

nt+1 lnt = e-β (25c) 
for ε i + 1 - ε i = l . 

The parameter ε is obtained from the mean income over all income classes: 

A note of caution should be added here; for a limited and homogeneously 
spaced number of income classes, the parameter β can, in principle at least, 
become zero or negative. In fact, depending on the average income we can 
distinguish three cases: 

(1) β > 0 exponentially decreasing function. 
(2) β - 0 number of households in all income classes are identical. 
(3) β<0 exponentially increasing function. 

D
ow

nl
oa

de
d 

by
 B

IB
L

IO
T

H
E

K
 D

E
S 

W
IS

SE
N

SC
H

A
FT

SP
A

R
K

S 
A

L
B

E
R

T
 E

IN
ST

E
IN

 A
t 0

5:
17

 1
9 

Fe
br

ua
ry

 2
01

6 
(P

T
)



International 
Journal of Social 
Economics 
20,10 

32 

If we consider, for example, a system of five income classes with equal spacings 
and income levels of Ε1 = Ε0,, ε2 = ε0 +1, ε3 = Ε0 + 2, ε4 = ε0 +3, ε5 = Ε0 + 4 where 
Ε0 is a minimum income level of, for example, Ε0 = 0.5 (all in arbitrary units of 
income, e.g. 20,000 DM/year) then e-Β ≡X can be derived from equation (26): 

By prescribing the average income x and therefore β is determined. The 
boundary case β - 0, and with it x = 1, leads to an average income of = 2.5 as 
can be seen easily from equation (27). 

Now, in economics, as well as in physics, the number of income classes 
(energy states) has no upper limit, or has an upper limit which is very large 
relative to the spacings of the lower classes. This implies that the total income 
(total energy) for the entire population stays only finite for an exponentially 
decreasing function with increasing levels of income. The same is done in 
physics, where Boltzmann found that 

where kB is the Boltzmann constant and T is the absolute temperature 
(temperature in Celsius + 273.15). Only for T→ ∞ does β = 0 act as a limiting 
case, but never negative. 

We can ask here, also, whether the function Ω, or InΩ has a minimum. This 
would be a state of distribution which would be extremely unlikely, at least for 
a closed system of identical entities. 

A state of low Ω, and therefore low S, can only be maintained in an open 
system where it is possible to import negentropy or to export entropy. Living 
systems are always such open systems, and human societies are good 
representatives. Households within a population are "rather smart" in the 
competing economic market; an ensemble of molecules is per se "rather stupid"; 
it depends on the sophistication of machines, which exchange energy and 
materials with their surroundings, as to whether they are able to be 
constructive and maintain a low entropy. 

An examination of Ω. shows that there is no regular minimum in the sense 
that the partial derivatives are zero. But there are K boundary minima, namely 
when: 

ni - 0 for all i ≠ j 
nl=N for i=j 

then 
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Which ni becomes N depends on the boundary condition of the total income E 
for: 

■ 

If we translate this state into the corresponding entropy function, we obtain: 
Smin=kslnΩmin = 0 (29) 

where Ωmin is a selective situation, which can be maintained in a steady state 
only through the smartness of the individual households or through active 
interference by some governmental restrictions. 

In the same light of argument, a bimodal distribution where some of the 
economic entities dominate the mass of the remaining economic entities, will be 
a state of still low entropy compared to the statistical result. It will be higher, 
however, than the minimum situation described above. 

Limiting Cases for the Distribution Problem as Derived from the 
Microstatistical Method 
We are interested, here, in how total products derived from economic activities 
are divided among households, disregarding any other groups which 
participate in the market. We refer here to one part of the factor market and 
study income as derived from the sale of services of the mind and body of family 
members and from the sale of services of properties which the household owns. 
We will first start with what Boulding economic analysis, called the principle of 
equal advantage (Boulding, 1966): 

If the owners of any resources think these can be put to better advantage in some other use 
than the one in which they are employed, the resources will be transferred from the less 
advantageous to the more advantageous use. The process of transfer will generally have the 
effect of making the occupation into which resources have been transferred less advantageous 
than before; it will make the occupation out of which resources, have been transferred more 
advantageous than before. As long, therefore, as there are people who believe that the 
resources they own, be they their own bodies or some other object, will yield them a greater 
advantage in an occupation different from that in which they are at present employed, then 
resources will be transferred from one occupation to another 

This results in a market economy, with no restriction to migrations where, an 
equilibrium is achieved in which the (monetary and non-monetary) advantage 
is the same in all occupations. This limiting case corresponds to the minimum 
entropy case derived above, in which all households have the same income. Of 
course, we know that this is not true in reality. We therefore now explain the 
other limiting case of equal probability of all microstates. This implies that all 
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households compete for the product of economic activity in purely random 
fashion. 

The evaluation of different macrodistributions and their statistical weight, 
represented by Ω (equation 1), will be discussed now. We choose N, the number 
of households, and K, the number of income classes which are small and 
restricted with an upper limit. For illustration we discuss the possible 
distributions of N= 10 households among K = 5 income classes as above: ε: 
= 1/2, ε2 = 3/2, ε3 = 5/2, ε4 = 7/2, ε5 = 9/2; all in arbitrary units of income, e.g. 
20,000 DM/year. We shall discuss in detail three cases, namely one case where 
the total income is restricted to 15 income units, representing the exponential 
case of an average income = 1.5; a second case where the total income is 25 
income units, representing the case of equal distribution among all income 
classes (β = 0) with an average income of = 2.5; and a third case where the total 
income is 35 units, corresponding to the inverted exponential distribution (β < 
0) with = 3.5, where all cases refer to five equally spaced income classes. It 
should be noted here that the relative weight of the statistical distributions does 
not change (as is evident from equation (27)) whether we consider ten 
households, or ten household units, where one unit represents 100,000 people, 
one or ten million people. 

However, the statistic becomes very opaque because, already, without a total 
income restriction and equal a priori probability for each of the income classes, 
we need to distinguish 

KN=51 0 = 9,765,625 
microdistributions, if we attached to each a family a number out of the set {1,2, 
3,4,5,6,7,8,9,10}. 

We first discuss the case for =1.5, and describe the results in Table I. We 
recognize 23 different macrostates among 72,403 microdistributions. Each 
macrostate is characterized by a characteristic income distribution, the different 
possibilities of realization can be derived from Ω, given in equation (1). 
Macrodistribution XXIII has a statistical weight of one, and is the most unlikely 
state - equal income of all households is the least favourable in a statistical 
sense. On the other hand, macrodistribution I, which is close to an exponential 
distribution, has the highest statistical weight, with the largest fraction of the 
population in the lowest state. The exact exponential distribution cannot be 
realized because of the small number of households participating in the 
distribution. 

We now discuss the case for =2.5, as described in Table II. Average energy 
has been chosen according to equation (27) such that e-β = 1 and therefore 
β = 0. Because of the large number of macrodistributions possible, namely 55, 
which are not too interesting in detail, we have listed only the distributions with 
high and low statistical weight. We notice here that the distribution with an 
equal number of households in each income class, represented by state I, has the 
highest statistical weight. Although not immediately obvious, it again presents 
an exponential distribution for β = 0. Macrostate LV with all households 
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35 

ε1 

I 
II 
III 
IV 
V 
VI 
VII 
VIII 
IX 
X 
XI 
XII 
XIII 
XIV 
XV 
XVI 
XVII 
XVIII 
XIX 
XX 
XXI 
XXII 
XXIII 

∑ = 

050 

4 
5 
5 
4 
3 
5 
5 
6 
3 
4 
4 
2 
6 
6 
3 
6 
6 
2 
7 
7 
5 
1 
0 

150 

3 
2 
2 
4 
5 
1 
3 
1 
4 
2 
4 
6 
0 
2 
6 
0 
1 
7 
0 
0 
0 
8 

10 

2.50 

2 
1 
2 
1 
1 
3 
0 
1 
3 
4 
0 
2 
2 
0 
0 
3 
0 
0 
0 
1 
5 
1 
0 

350 

1 
2 
0 
0 
1 
1 
1 
1 
0 
0 
2 
0 
2 
0 
0 
0 
3 
1 
2 
0 
0 
0 
0 

4.50 

0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
0 
0 
0 
2 
1 
1 
0 
0 
1 
2 
0 
0 
0 

Ω 
12,600 
7,560 
7,560 
6,300 
5,040 
5,040 
5,040 
5,040 
4,200 
3,150 
3,150 
1,260 
1,260 
1,260 

840 
840 
840 
360 
360 
360 
252 
90 
1 

72,403 

Ω/∑ 

01740 
0.1044 
01044 
0.0870 
00696 
0.0696 
00696 
0.0696 
0.0580 
0.0435 
0.0435 
0.0174 
00174 
0.0174 
00116 
0.0116 
00116 
00050 
00050 
00050 
00035 
00012 
0.0000 

1.0000 

Table I. 
Macrostates (I, II,.. , 

XXIII) and Their 
Statistical Weight Ω for 

a Ten-household/Five-
income Class System 

and a Total Energy of 
E = 15 Income Units 

earning the same income, this time increased by one unit above the first case, 
again has the lowest statistical weight. 

For completeness, we have also calculated the case in which β < 0 (as shown 
in Table III) for an average income of 3.5 units. In reality, this case would not 
occur, as mentioned in the previous section, because the income levels have no 
upper limit. The example is chosen in such a way that Table I and Table III are 
mirror images of each other. Here again, the next exponential macrostate I has 
the highest statistical weight, while macrostate XXIII is realized by just one 
microdistribution. 

In summary, we state the the exponential distribution independent of total 
income, has the highest chance to be realized, if a pure statistical distribution is 
applicable. The entropy associated with the state of highest probability for the 
near exponential distribution is simply proportional to lnΩmax. Any other 
distribution is a non-equilibrium state, which can be retained by external forces 
or a state in a thermodynamically open system. If an entropy is associated with 
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ε1= 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 
IX 
X 
XI 
XII 
XIII 

XLVI 
XLVII 
XLVIII 
XLIX 

L 
LI 
LII 
LIII 
LIV 
LV 

∑ = 

050 

2 
1 
1 
2 
2 
3 
3 
1 
1 
2 
2 
2 
2 

2 
0 
3 
0 
1 
0 
5 
0 
1 
0 

1.50 

2 
3 
3 
1 
3 
1 
1 
2 
4 
2 
2 
3 
1 

2 
6 
0 
2 
0 
5 
0 
1 
0 
0 

250 

2 
2 
3 
3 
1 
1 
2 
4 
1 
1 
3 
0 
4 

0 
1 
1 
7 
7 
0 
0 
8 
8 

10 

350 

2 
3 
1 
3 
1 
3 
1 
2 
2 
4 
0 
3 
1 

6 
0 
6 
0 
2 
5 
0 
1 
0 
0 

450 

2 
1 
2 
1 
3 
2 
3 
1 
2 
1 
3 
2 
2 

0 
3 
0 
1 
0 
0 
5 
0 
1 
0 

Ω 

113,400 
50,400 
50,400 
50,400 
50,400 
50,400 
50,400 
37,800 
37,800 
37,800 
25,200 
25,200 
37,800 

1,260 
840 
840 
360 
360 
252 
252 
90 
90 
1 

856,945 

Ω/∑ 
0.1323 
00588 
00588 
00588 
0.0588 
00588 
0.0588 
0.0441 
0.0441 
0.0441 
0.0294 
00294 
00441 

0.0015 
0.0010 
00010 
00004 
00004 
00003 
00003 
0.0001 
0.0001 
0.0000 

1.0000 

Table II. 
Macrostates (I, II,..., 
LV) and Their 
Statistical Weight Ω for 
a Ten-household/Five-
income Class System 
and a Total Energy of 
E = 25 Income Units 

these non-equilibrium distributions, where S is again proportional to 1nW, then 
the entropy change, according to equation (3), is given by: 

AS is positive in all cases. The equilibrium entropy associated with the (near) 
exponential distribution is dependent on the mean income, as long as β ≥ 0, S 
increases with increasing income, as a comparison of Ω in Tables I and II shows. 

Transition from the Discrete Class Model to the Continuous 
Boltzmann Exponential Distribution 
In the previous section we presented a model of equal income spacing, 
considering five income classes, ten households and three different values of 
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ε1= 
I 
II 
III 
IV 
V 
VI 
VII 
VIII 
IX 
X 
XI 
XII 
XIII 
XIV 
XV 
XVI 
XVII 
XVIII 
XIX 
XX 
XXI 
XXII 

XXIII 
∑= 

0.50 

0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
0 
0 
0 
2 
0 
1 
1 
0 
1 
2 
0 
0 
0 

150 

1 
2 
0 
0 
1 
1 
1 
1 
0 
0 
2 
0 
2 
0 
3 
0 
0 
1 
2 
0 
0 
0 
0 

250 

2 
1 
2 
1 
1 
3 
0 
1 
3 
4 
0 
2 
2 
0 
0 
0 
3 
0 
0 
1 
5 
1 
0 

3.50 

3 
2 
2 
4 
5 
1 
3 
1 
4 
2 
4 
6 
0 
2 
1 
6 
0 
7 
0 
0 
0 
8 

10 

450 

4 
5 
5 
4 
3 
5 
5 
6 
3 
4 
4 
2 
6 
6 
6 
3 
6 
2 
7 
7 
5 
1 
0 

Ω 
12,600 
7,560 
7,560 
6,300 
5,040 
5,040 
5,040 
5,040 
4,200 
3,150 
3,150 
1,260 
1,260 
1,260 

840 
840 
840 
360 
360 
360 
252 
90 
1 

72,403 

Ω/∑ 

01740 
01044 
0.1044 
00870 
00696 
00696 
0.0696 
00696 
0.0580 
0.0435 
00435 
00174 
0.0174 
0.0174 
00116 
0.0116 
00116 
0.0050 
0.0050 
00050 
00035 
0.0012 
0.0000 

1.0000 

Table III. 
Macrostates (I, II,..., 

XXIII) and Their 
Statistical Weight Ω for 

a Ten-household/Five-
income Class System 

and a Total Energy of 
E = 35 Income Units 

average income: ε =1.5, 2.5, 3.5. As in case 1, ε = 1.5 represents a typical 
exponential fall-off curve. We will examine here the transformation of this 
discrete income level system to the corresponding continuous distribution 
function of exponential character. In fact, the non-normalized exponential 
function Ce-βε may be partitioned into five income columns of width Δe = 1 and 
height Ce-βεt (i = 1,2,...5), in which the areas or the heights of the column 
exactly represent the corresponding relative weights of the occupation of the 
discrete system. With equation (27) we can evaluate the steepness parameter β 
which, for ε = 1.5 (Ε0 = 0.5), assumes the value β = 0.565 and C = 6.12 for ten 
households. The area of the five columns can be replaced, to a good 
approximation, by the corresponding area underneath the exponential curve 
within the limits of ε = 0 and ε = 5. Redetermining the parameter β for the 
continuous distribution between the limits of ε = 0 and ε = 5 yields a somewhat 
smaller value, namely β = 0.53. If one compares this value with the 

D
ow

nl
oa

de
d 

by
 B

IB
L

IO
T

H
E

K
 D

E
S 

W
IS

SE
N

SC
H

A
FT

SP
A

R
K

S 
A

L
B

E
R

T
 E

IN
ST

E
IN

 A
t 0

5:
17

 1
9 

Fe
br

ua
ry

 2
01

6 
(P

T
)



International 
Journal of Social 
Economics 
20,10 

38 

corresponding value of β, when the exponential tail is considered, we obtain 
with the results of equation (12): 

Using this parameter β we can determine the fraction of households between 
ε = 0 and ε = 5 according to equation (10): 

(5) = l - β e - β ε = 0.976 
and the fraction of income ε between ε = 0 and ε = 5 according to equation (11): 

ê(5) = l-(1 + βe)-βε = 0.845 
which shows that, in the exponential tail, 2.4 per cent of households receive 15.5 
per cent of income. 

Dynamic Considerations of the Distribution of Income in Relation 
to the Statistical Analysis 
The Boltzmann statistics of an ensemble of molecules which share a given total 
energy assumes that the energy can be exchanged through binary, ternary and 
higher order collisions such that every energy configuration in molecule space 
can be explored. Macroscopic systems are generally characterized by a very 
large number of molecules, of the order of 1024, and by collision frequencies of 
the order of nanoseconds. The statistical weight of the exponential distribution 
is many orders of magnitude larger than any other non-exponential distribution 
such that the former distribution represents the equilibrium situation. Any non-
equilibrium distribution will relax quickly to the corresponding exponential 
equilibrium distribution. 

We shall now analyse the economic process in a number of dynamic 
experiments which describe the physics of identical particles correctly and 
which may bear some relation to an idealized economic situation. In the 
previous section we could demonstrate that the simple ten-household/five-
income class system is a good representative of the more general statistical 
result derived above. As a first step towards a mechanistic interpretation of the 
underlying dynamic process we performed the following numerical experiment. 

We assumed, for all ten households, that any of the income classes can be 
occupied with equal probability. In practice a "die" with five income states is 
thrown ten times in a row associating each household 1,2 10, with one of the 
five income states. This procedure was repeated about 107 times yielding most 
of the 510 possible microstates which, for the greater part, do not match the 
boundary condition that their total energy equals 15 (energy Case 1). From the 
example in the previous section, we know that there are 72,403 out of 510 

microstates (or about 1 per cent) which match the prescribed total income, 
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constituting 23 distinguishable distributions. Now the repetitive occurrence of 
each of these distributions was counted and divided by the total number of 
distributions matching the income condition. The obtained relative frequencies, 
taken on a cumulative basis, were shown to be equal to the calculated 
probabilities given in the table of the previous section within a precision of 
±0.04. This dynamic model reproduces the expected equilibrium, but includes 
"transient" states which are taken out because they do not fulfil the total income 
conservation. 

In the previous example, we considered essentially the statistical distribution 
of national income resulting from all economic activities in the production of 
goods and services. If we follow up the picture of an exchange in pairs, as is 
important in physics, we realize that such pair exchanges also exist between 
economic entities. The most common one is, of course, the exchange of real 
goods between two households in primitive societies. Income of households 
usually refers to one part of a factor market where monetary income is derived 
from the sale of services of mind and body and also from the sale of services of 
property. 

In a situation of competition between many individuals with one employer, 
we can apply the example of the distribution of the "cake" as above. A more 
restricting consideration, which still keeps the total income constant, is that any 
chosen pair of individuals can redistribute their income in the sense that the 
sum of the two incomes remains constant. If this process is repeated many times 
for all possible pair combinations, we should indeed arrive at the statistical 
result of the above. We started with an arbitrary distribution, matching the total 
income boundary condition. Then we randomly chose pairs of economic 
entities, simulating their exchange by a stochastical redistribution of the 
income sum of the two households involved. With ε(i) being the income of the 
entity with number i we calculate for randomly chosen i and j: 

{ε(i), ε(j)}=>{r [ε(i)+ε(j)], (/-r)[ε(i)+ε(j)]} (31) 
r: uniformly distributed stochastic variable, 0 ≤ r ≤ 1. 

When using the ten-household/five-income class system as an example, we 
choose i,j and ε from the sets: 

i,j from {1,2,...,10}, and ε from {1/2, 3/2, 5/2, 7/2, 9/2}. 
We performed the interaction experiments in sets with l consecutive exchanges, 
where l exceeded the number of different pairs to be formed from N 
distinguishable households (here N(N-1)/2 = 45). The resulting distribution 
was identified with one of the 23 macrodistributions, and then the next set of l 
exchanges, starting with the same initial distribution, was performed. For our 
example system we obtained that the relative frequency of the resulting 
distributions equals the calculated values of the statistical results, independent 
of which initial distribution was chosen. Hence, we established a model of the 
redistribution of income among the economic entities which reproduces the 
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statistical result of the previous section and allows an identification of the 
exchange partners. It should be noted that the initial distribution can influence 
the final outcome if, within each set, only a small number of interactions are 
considered. Furthermore, we emphasize that as the number of entities and 
classes increases, as in any real system, the weight of the exponential or near 
exponential distribution exceeds all other allowed distributions many times. 

Interpreting a binary exchange as an economic interaction, one may assume 
that the redistribution between the two partners depends on their state before 
the interaction, implying a Markov process beyond the analysis of the previous 
section. We tested the following form of asymmetric interactions for our 
example system: 

{ε(i), ε(j)} {r'[ε(i)+ε(j)],{l-r')[ε(i)+ε(j)]} (32) 

with: r'= r(ε(j)+a)/(ε(j)+a) 

r. uniformly distributed stochastic variable, 0 ≤ r ≤ 1. 
a. parameter, determining the redistribution of household income with 

respect to the household income before the exchange (a →∞: previous 
model). 

The relation (ε(j)+ a)/(ε(i) + a), a measure of the asymmetry in the income 
redistribution, favours the entity with a higher income. It is most sensitive for 
a→0; for a→∞ it reproduces the independence from the income before 
exchange. Using this model of exchange for arbitrary finite a, we obtained the 
result that, independent of the initial distribution of income, a bimodal 
distribution (see distributions XIX and XX of Table I) is favoured over all other 
distributions with the relative frequency approaching 1 for l →∞. This 
particular case may perhaps be an analogue for the distribution of incomes in 
underdeveloped nations, where many people with practically no income are 
contrasted with a few rich people. 

We also formulated the principle of equal advantage on the basis of binary 
exchanges. In an analogy to the above, the following strategy was assigned: 

{ε(i), ε(i)} {r'[e(i)+e(j)], (1-r')[e(i)+e(j)]} (33) 

with 

In the case of A = 1, we get back the unbiased statistical result of an exponential 
distribution. 

If 0 < A < 1, we obtain a tendency towards equilibration, in the sense that the 
economic unity with the lower income moves to a higher advantage position, 
lowering at the same time the incomes in the high advantage position. Again, if 
the experiment is performed in a set of l consecutive interactions, and then 
repeated in many sets, we obtain the equal income situation of distribution 
XXIII. We noticed in the section above that these mechanisms assume an 
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evolutionary strategy in which the entities are free to move within a market 
economy, and smart enough to sense their advantage. 

Comparison of Lorenz Curves of Income Derived from Empirical 
Data and from the Generalized Maxwell-Boltzmann Distribution 
Function 
In the second section we derived the Lorenz function from an exponential 
distribution function of income and could show that its Gini coefficient is 1/2, 
independent of the exponential parameter β. The exponential function itself has 
the highest statistical weight W, and therefore is the most stable one in a 
thermodynamic sense. We developed, in Appendix 1, the more general 
statistical result for a system with n degrees of freedom, the Maxwell-
Boltzmann distribution, of which the exponential distribution is a special case 
for n = 2. In this section, we now explore, for a series of countries, whether the 
Lorenz curve, derived from the Maxwell-Boltzmann distribution, produces a 
reasonable match with the corresponding empirical data. 

As before, in equations (15) and (16b), for the exponential function, we define 
here for the generalized, normalized Maxwell-Boltzmann function: 

the cumulative fraction of the population (ε), earning equal or less than ε: 

and the cumulative fraction of income earned by households with incomes less 
than ε: 

We try now to fit some empirical data of the distribution of income with Lorenz 
curves derived from the Maxwell-Boltzmann distribution. Some typical results 
are shown in Figure 3. It can be seen that the Lorenz curves derived from the 
Maxwell-Boltzmann functions produce a rather good match. 

Tables IV and V show the Gini coefficients for the empirical data, the 
exponential n for the calculated curves and the mean deviation of the calculated 
from the empirical curves < | êemp - ecalc | >. 
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The results shown in Table IV were obtained by using parameters n ≥ 0. If the 
distribution of income is very unequal (i.e. larger Gini coefficients) we have to 
use n < 0. In these cases, the integrals over fε;β,n) diverge at the lower limit 
(ε1 = 0) and we need to introduce a low cut-off bound εi for mathematical reasons 
to prevent a singularity. Only if εi > 0 does the parameter β become relevant. 
The result for such a fitting process is given in Table V. 

In summary, we can state that the Lorenz curves for the distribution of 
incomes deviate in general from the generating curve of a simple exponential 
function, which corresponds to n = 2 in the Maxwell-Boltzmann distribution. 

Table IV. 
Evaluation of the Gini 
Coefficients for Selected 
Countries within 
Parametrization n of 
Generalized Maxwell-
Boltzmann Distribution 

Country 

FRG-E90 
FRG-W89 
Sweden 
UK 

n 

64 
5.9 
60 
5.0 

Gini 

0.295 
0318 
0301 
0327 

<|êemp-êcal|> 

0.002 
0001 
0007 
0008 

Table V. 
Evaluation of the Gini 
Coefficient for Brazil 

Country ε1 β n Gini <|êemp-êcal|> 

Brazil 0.01 08 -1.0 0624 0.009 
With a best match with the values n, β in the Maxwell-Boltzmann distribution 
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The Gini coefficients (which equal 0.5 for this particular case (n = 2)) either lie 
above 0.5, as for the developing country Brazil (Gini coefficient = 0.624) or 
below, as for all of the industrial countries examined here. We note that, for all 
cases with n > 0, the results of the Gini coefficient are independent of the 
parameter β, which is determined by the mean income = 0.5 ;nβ-1. Again, the 
Lorenz curves are independent of or β; thus, an increase in income without 
structural changes does not show up in the Lorenz curve. We summarize by 
saying that the income distribution may, at least to some extent, be the result of 
a statistical distribution process where all allowed microstates have equal 
statistical weight. 

In conclusion, we should like to state that neither of the two extreme 
standpoints to explain the inequality of incomes - namely, the conventional one 
of different backgrounds and the one presented here of equilibrium statistics -
can lead to a totally satisfactory explanation. We perhaps think that the 
evolutionary strategies, as developed most recently in molecular biology, may 
be an interesting lead to follow up in more detail. 
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Appendix 1. Maxwell-Boltzmann Distribution of Molecules in n Degrees of 
Freedom - Generalized Maxwell-Boltzmann Distribution of Income 
The distribution of velocities in one-, two- and three-dimensional space of an ensemble of 
molecules, as well as their corresponding kinetic energies, is a well-known result of statistical 
thermodynamics Translational, rotational and vibrational energies of molecules can always be 
expressed as a sum of the squares of the corresponding generalized co-ordinates qt: 

where the sum extends over n degrees of freedom, where n = 3 for translation and rotation each, 
and n = 2 for each vibration as both kinetic and potential energies need to be considered. 

The energetic state of the molecule can be represented by a vector in n-dimensional space. 

= {q1 q2, ... qn) (A2) 
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where the distance r(n) = | rn | from the origin is given by the Pythagorean relation: 

The probability distribution of molecules in two degrees of freedom. (e.g. kinetic and potential 
energy of a vibrational motion) is given by the well-known Boltzmann exponential function-

which can be related to the more familiar form in energy space, using the relations: 

and the transformation of Cartesian co-ordination (q,q2) into polar co-ordinates (r(2), φ) 
dq1dq2=r(2)dr(2)dφ 

resulting after integration over φ in: 

The general result for the joint probability in n degrees of freedom is given by a generalized 
expression of equation (A4) 

or after a transformation to polar co-ordinates in n-dimensional space and integration over all 
variables except r(n): 

If, again, we make the transition energy space, we obtain the now normalized result of the 
Maxwell-Boltzmann distribution in n degrees of freedom: 

where Γ(n/2) = (n /2- l ) ! 
The Maxwell-Boltzmann function evaluates this distribution of energy among molecules 
according to statistical physics, with the result that the energy distribution is unequal among 
equal molecules and that it depends on the number of degrees of freedom taken to be equal for all 
molecules of the set. 

A Proposal for a Transition from Statistical Physics to Economics 
Although it is not clear, at present, if there is an economical analogy to energy and the degrees of 
freedom, we will suppose that we can represent the economic status of individual households in a 
hyperspace with a dimension given by the degrees of freedom, n, in which a function of the 
distance from the origin represents the income. As a first assumption we choose the square of the 
distance to be representative because, then, the laws of statistical physics are directly applicable. 
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We shall suppose for the moment that the state variables represent the various possibilities of 
economic engagement common to all households participating in the economic process. We shall 
see in the discussion of the article that if the close analogy between statistical physics and the 
economy is maintained, how the resulting distribution of income depends on the number of the 
"degrees of freedom". We now interpret e(n) as the income e (omitting the index n) and use n as a 
convenient parameter to find the closest match to the observed Lorenz curves. We will use the 
normalized function: 

where β is a steepness parameter of the exponential fall off and n is the parameter for the 
"degrees of freedom", which gives analytical results in the Lorenz graph interpretation, as long as 
n is a real positive number, i e. n > 0. 

Appendix 2.The Pareto Function 
It is very interesting to note that Pareto suggested a "natural law" for the income distribution of 
the form: 

where A depends on the size of the population, a is constant of equal magnitude as the lowest 
considered income, and where a ranges between 1.4 and 1.8 with a mean value of 15 As: 

we obtain the corresponding distribution function: 

This function has great formal similarity to the suggested generalized Maxwell-Boltzmann 
distribution function, or a sum of two such functions, if we neglect a. However, there is one 
important difference, in as much as the integral over/(e) has a singularity caused by a = 1.5 and 
2 5 (corresponding to a Boltzmann parameter n = -0 5 and n = -1.5) as ε approaches zero. The 
integral between a lower limit of ε and infinity is sensitive to the chosen value of the lower limit 
and therefore is not too useful, at least for an integral representation as needed in the Lorenz 
curve. 
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