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1. INTRODUCTION

The response of the net primary production (NPP) of
global vegetation to climate change is of central concern
for global carbon cycling and climate impact research.

With respect to the first point, estimation of the feed-
back of the global terrestrial ecosystems via net carbon
release or storage of atmospheric CO2 concentrations
is essential for any climate prognosis concerning
greenhouse effects (e.g. Kohlmaier et al. 1991), as well
as for paleoclimatic reconstructions (e.g. Levis et al.
1999). Here, in addition to heterotrophic respiration,
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changes in NPP are responsible for ecosystem produc-
tion changes. Changes in other vegetation properties
relevant to climate feedback, such as evapotrans-
piration or leaf area index, are also closely related to
NPP. On the other hand, in the context of systemic cli-
mate impact research, the NPP of terrestrial natural
vegetation is an important indicator for assessing the
role of possible future climate change for both nat-
ural and managed ecosystems on a global scale (e.g.
Alcamo 1994, Cassel-Gintz et al. 1997, Lüdeke et al.
1999). Here, global problems such as food security and
desertification are addressed.

An alternative to the mass flux oriented approach
used in this study, attempts have been made to
describe the response of vegetation in terms of struc-
tural changes using climatic envelopes for discrete
vegetation types or biomes (e.g. Prentice et al. 1992).
This provides only a relatively rough picture of climate
impact on vegetation, since, for example changes in
NPP or carbon stock may be considerable, even with
no change in vegetation type. However, these models
were used in coupled climate-vegetation modeling,
due to their simplicity and fast computing time (e.g. de
Noblet et al. 1996, Kubatzki & Claussen 1998). A re-
cent development in vegetation modeling is the com-
bination of the flux/state and the biome approaches,
mostly via the competition of plant functional types
(e.g. Foley et al. 1996), a way that appears straight-
forward but carries with it tremendous difficulties.

We now face 2 major uncertainties in projecting NPP
under climate change: (1) uncertainty with respect to
the description of dependence of NPP on climate; and
(2) uncertainty with respect to climate predictions.
Both uncertainties will be addressed explicitly in the
present study, with no subjective choice of a best NPP
model or a best climate forecast.

Uncertainty (1) is clearly documented by the results
of an intercomparison of 17 state-of-the-art vegetation
models (Cramer et al. 1999), which shows considerable
differences in basic model assumptions and in the
global NPP fields calculated for the existing climate.
Both differences indicate that the mapping of climate
impact on NPP obviously requires more precision. In
Section 2 of this paper, we propose a pragmatic 2-step
procedure for dealing with this scientific uncertainty:
(1) the global NPP fields calculated for the current cli-
mate by several mechanistic models are to be aver-
aged to obtain a ‘best guess’ NPP-field characterized
by the minimum expectation value for errors; (2) an
artificial neural network (ANN) which reproduces this
‘best guess’ NPP field from a climatology of monthly
normals for temperature, precipitation and insolation is
to be trained. The result is the Neural Net NPP model
(NNN), which allows fairly rapid calculation of NPP
from 36 climate input variables, while to some extent

reproducing the ‘wisdom’ of the mechanistic models.
Its validity is tested by identifying moisture-limited
regions using the NNN and comparing them to an
independent measure from a functional soil water
model.

Uncertainty (2) is illustrated by the study of Ciret
& Henderson-Sellers (1997), in which the differences
between the climate simulations of several global cir-
culation models (provided by the Model evaluation
Consortium for Climate assessment) with respect to
their importance for the determination of vegetation
type on the basis of simple biome models were investi-
gated. The discrepancies in the computed vegetation
distribution were considerable (agreement on less than
50% of land area)—so one would expect similarly poor
agreement on calculated NPP fields (see, e.g. Melillo et
al. 1993). This provides the motivation to perform a
local sensitivity analysis of NPP in climate space,
rather than comparing NPP fields calculated from cli-
mate predictions.

This sensitivity analysis (Section 3) is carried out in 3
steps: (1) Aspects of climate elements which will be
constant under climate change, e.g. the influence on
temperature of the control variables altitude and inso-
lation at the top of the atmosphere, have to be ‘sub-
tracted’. (2) The resulting climate variables which are
now subject to change must be scaled (e.g. to make the
NPP change caused by precipitation and that caused
by temperature comparable); moreover, they will not
change totally independently from one another (e.g.
temperature change in January and February will not
be independent). This is guaranteed by a principal
component transformation of climate space and by
applying the z-norm. (3) Finally, the absolute value of
the gradient of NPP with respect to the transformed cli-
mate is calculated as a measure of climate sensitivity,
indicating the maximum ‘slope’ of NPP, realized by the
respective ‘worst-case’ direction of climate change.

In Section 4, the sensitivity results are discussed, and
areas of particular NPP climate sensitivity are identified.

2. NNN: A STATISTICAL MODEL FOR NPP

2.1. A ‘best guess’ global equilibrium NPP field

To be able to construct our NPP-model NNN, we first
need a ‘best guess’ NPP field. At the present stage of
functional global vegetation modeling, several differ-
ent approaches exist in parallel, and since there is no
complete consensus on the importance of the eco-
logical and ecophysiological processes involved, with
even more disagreement on their parameterization,
the modeling results of different work groups, includ-
ing their global equilibrium NPP fields, vary to some
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extent. Due to the lack of sufficient ground truth data
(only some hundreds of NPP observations for the
whole globe; Olsen et al. 1997), the results of all these
models have at present to be considered equally likely.
The uncertainty is enhanced by the spatial disaggre-
gation problem (point measurements vs modeled aver-
ages for areas of about 1000 km2).

In order to make optimal use of this present state
of knowledge, we: (1) took the arithmetic average of the
results of several vegetation models, so as to some ex-
tent overcome the insufficiencies of the single models;
and (2) quantified the disagreement between the model
results by the standard deviation of the model average,
to assess the degree of expert consensus.

Assuming a complete, although unknown, set of
observations, it is easy to prove that, by taking this
average result instead of one arbitrarily chosen single
model result, one obtains:
• a smaller mean absolute error,
• a smaller mean square error, and
• a smaller maximum absolute error
at every pixel, compared with the respective expecta-
tion value (under rather unlikely conditions, the errors
could be equal). Short proofs for these 3 properties are
given in Appendix A.

We would like to stress here that this procedure is
not an attempt to replace the necessary scientific clari-
fication process regarding the correct method for
modeling global vegetation; rather, it is an attempt to
make the present state of knowledge with respect to
an annual global equilibrium NPP field accessible.

To obtain a ‘best guess’ NPP field in the sense men-
tioned above, we averaged the equilibrium NPP
results of 7 different global vegetation models which
were all driven by the same climatology, and some of
them additionally by further global parameter fields
which are constant in time.

For this purpose:
• we used models which deal with potential natural

vegetation, excluding effects of direct human impact
(e.g. land use change) which are not predictable by
using climate data only; hence, models driven by
observed global fields of vegetation properties (like
NDVI fields) are not suitable for our purpose;

• models should be prognostic to some extent, at least
for intermediate time scales (decades), i.e. the
dynamics of the main vegetation properties must be
calculated internally.
In Table 1, the 7 modeling groups which provided

recent global annual NPP results for the present study
are listed. We by no means wish to imply that the
models chosen are the only acceptable ones which
fulfill the above conditions—the choice also depends
on practical aspects (global model results based on
common driving variables being on hand or simple to
produce). In general the proposed procedure must
always have a transient and to some extent prelimi-
nary character.

In Fig. 1, we show the result of the averaging pro-
cess, which amounts to a total global NPP of 54.40 GtC
yr–1, and in Fig. 2, we show the standard deviation of
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Table 1. Vegetation models used in the averaging process

Model Source

HRBM Esser et al. (1994)
BIOME3 Haxeltine & Prentice (1996)
PLAI Plöchl & Cramer (1995a,b)
SILVAN Kaduk & Heimann (1996)
DOLY Woodward et al. (1995)
FBM Lüdeke et al. (1994)

Kohlmaier et al. (1997)
CENTURY Schimel et al. (1996)

Fig. 1. Averaged equi-
librium net primary pro-
duction (NPPavg; kgC 

m–2 yr–1)
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the local NPP distribution. Most of the areas of poor
model consensus (Fig. 2) show up at the transition
zones between different climatic regimes. In terms
of the Köppen-Trewartha classification (Köppen 1931,
Trewartha 1968), the western part of Ethiopia is char-
acterized by the transition from the Tropical Humid,
Winter Dry Savanna climate (Aw) over the Warmer Dry
Steppe climate (BSh) to the Warmer Dry Desert climate
(BWh) and shows a high standard deviation; the same
occurs between the Warmer Humid, Constantly Moist
Humid Subtropical climate (Caf) in Argentina, Para-
guay and Brazil on the one hand and the Dry Steppe
(BS) or the Tropical Humid, Savanna climate (Aw) on
the other hand. Another region of poor model consen-
sus is located around the northern borders of Bhutan,
Arunachal Pradesh (India) and Myanmar, which is
characterized by the transition between the Polar Tun-
dra climate (ET) and the Warmer Humid, Subtropical
Winter Dry climate (Caw). Other regions of high stan-

dard deviation, e.g. the area northwest of Lake Victoria
and areas in the eastern part of Colombia or Western
Australia, cannot be assigned to the Köppen classifica-
tion of climatic transition zones.

The global mean of the local absolute deviation
amounts to 0.097 kgC m–2 yr–1. Despite this rather
poor consensus, compared to the average result of
0.345 kgC m–2 yr–1, the global equilibrium NPP field
shown in Fig. 1 has to be regarded as the ‘best guess’
result, according to the above arguments.

2.2. Predicting the ‘best guess’ NPP field from
climate data with an ANN

The vegetation model results considered in the aver-
aging process above were obtained by means of a
widely-used climatology, the CLIMATE2.1 database
(Leemans & Cramer 1991, W. Cramer pers. comm.,
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Fig. 2. Standard deviation
of the local NPP distribu-
tion for the 7 different NPP 

models (kgC m–2 yr–1)

Fig. 3. The Neural Net NPP
model (NNN) result, as repro-
duced by the best single 

neural net (kgC m–2 yr–1)
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1997), consisting of 36 climate variables—12 mean
monthly temperatures, 12 monthly precipitations and
12 mean monthly light intensities (originating from rel-
ative sunshine data)—on a 0.5° × 0.5° grid of the ter-
restrial surface of the Earth (excluding the Antarctic),
for a total of 62 483 grid elements. To make the north-
ern and southern hemispheres comparable, the vari-
ables for the southern hemisphere have been shifted
by 6 mo, e.g. New Zealand’s January is mapped onto
July in all our calculations.

These 36 input variables are sufficient to reproduce
the ‘best guess’ NPP field by means of a simple para-
meterized ANN model with a mean accuracy signifi-
cantly better than the mean model consensus. The
12 519 grid elements representing North America were
taken out of the parametrization procedure and used
as a test set. The remaining 49 964 grid elements were
used to train a 3-layer feed-forward neural network
with 36 input nodes (for the climate elements), 1 hid-
den layer with 21 nodes, 1 output node (for the NPP)
and additional direct connections from the input nodes
to the output node. This ANN is defined by its struc-
ture, the so-called activation function and 835 weights
and offsets (for details, see Appendix B). The relatively
high number of parameters of the ANN originates
from the high dimension of the input space spanned by
climate and the necessity of considering non-linear
properties. These parameters were optimized by a
steepest descent procedure to reproduce the NPP field
of the training set with a minimum mean square error
(‘standard back-propagation’). Since this optimization
algorithm is stochastic (especially due to the random
initial values) and there is a multitude of local optima,
we applied the optimization algorithm 30 times and
took the best of these runs (as defined by the least
square error in the test set). The optimum of parame-
terization was fixed, and defines the Neural Net work
NPP model ‘NNN’. NNN was applied to the test set
(North America), which was ‘unknown’ for the training
procedure.

After several experiments with respect to the net-
work’s structure using, for example 2 hidden layers or
radial basis functions, we obtained a mean absolute
error of 0.025 kgC m–2 yr–1 for the training set and
0.028 kgC m–2 yr–1 for the test set. The complete result
of the optimum neural net using the 36 climate ele-
ments as input is displayed in Fig. 3 (an enlargement
for a part of Europe is shown in Fig. 4), showing a very
good reproduction of the ‘best guess’ NPP field by the
NNN model, with a mean absolute error of 0.026 kgC
m–2 yr–1; this is significantly smaller than the mean
absolute deviation of 0.097 kgC m–2 yr–1, which
describes the model consensus. The total global NPP of
the fit amounts to 55.43 GtC yr–1 (101.9% of the tar-
get). To compare the uncertainties of the NNN model

with the degree of consensus occurring in the NPP
averaging process in more detail, the integrated distri-
butions of root mean square error (which is in this sim-
ple case the absolute error) and the standard deviation,
σ, are displayed in Fig. 5 and show significantly fewer
grid elements for every error interval. To estimate the
stochastic uncertainty in the training procedure of the
net, we took the 15 best nets (out of a total of 30) and
averaged the standard deviation at each pixel of the 15
different results of these nets over the whole world. We
arrived at 0.011 kgC m–2 yr–1, which is significantly
less than the mean difference between the NNN and
the ‘best guess’ NPP, indicating that this optimization
error is comparatively small.
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Fig. 4. An enlargement of Fig. 3 showing a part of Europe

Fig. 5. Comparison of the cumulative distribution of the root
mean square error of the NNN (which equals the absolute er-
ror in this case, as only 1 datum pixel–1 is considered) (dashed
line) with the cumulative distribution of the standard devia-
tion of the NPP averaging process (solid line). x-axis: value of
the root mean square error or standard deviation, σ, respec-
tively. y-axis: number of grid-points with root mean square 

errors or σ greater than x
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At this point we want to stress that due to the statis-
tical character of the modeling approach the NNN
model could produce somewhat unrealistic results for
climates which are very different compared to the
existing ones (e.g. a monthly oscillating temperature
with an amplitude of 30 K).

To make the model accessible, we provide a short
piece of computer source code (FORTRAN or C-sub-
program, available at: www.pik-potsdam.de/~oliver/
NPP.html) which contains the ANN structure, the
transition function and the weighting factors.

2.3. Testing NNN

The crucial test for a statistical model such as the one
described here is to reproduce data not used in the
training process. Instead of using randomly sampled
grid elements for this purpose, we chose a whole
region (North America) as a test set, which is spatially
separated from the grid elements used for training, so
that there is no interdependence between the test cli-
mate and the training climate due to the interpolation
done to produce the CLIMATE2.1 database.

The spatial pattern of the deviation of the neural net
fit from the average NPP field shows a reasonable
although somewhat worse reproduction of North
America as compared to the training set (Fig. 6), in
spite of the existence of several different vegetation
zones and transitional regions. Therefore we are confi-
dent that the model can be applied to climates for
which it is not directly trained, which is a condition for
its application in the analysis of climate change.

It is not self-evident that empirical models such as
the present ANN, or any other statistical method, can
reproduce a correct result for the right reason, such as

a low NPP value caused by moisture limitation (i.e. a
specific combination of annual precipitation and
temperature course) rather than using other, non-
functional, correlations.

As a test of the ability of the NNN presented here to
reproduce functional properties in this sense, we used
it to identify regions where NPP is limited by precipita-
tion. To achieve this, we increased the monthly precip-
itation values by 100 mm mo–1 on each pixel, and com-
puted the relative increase in NPP. One would expect
that an increase in NPP would be calculated in precip-
itation-limited regions, while in regions governed by
other limiting factors, the resulting NPP would remain
constant. The result is displayed in Fig. 7, where
increased values indicate increased moisture limita-
tion. This result can be compared with an aridity coef-
ficient, α (Fig. 8), which describes the annual sum of
the daily ratios between actual and potential annual
evapotranspiration as obtained from a functional soil
water model (Prentice et al. 1992). The main spatial
patterns of α are very similar to those calculated with
NNN. The greater gradients in the transition zones
between arid and non-arid regions in the case of
NNN are to be expected as a result of the non-linear
response of NPP to the soil moisture regime.

3. PERFORMING THE LOCAL SENSITIVITY
ANALYSIS

As previously demonstrated (e.g. in Lüdeke et al.
1999) the climate change prognosis produced by GCM
modeling, despite the GCM’s high scientific sophisti-
cation, shows such a degree of uncertainty that results
of impact analyses become, at least partly, question-
able. Therefore, we are seeking a method for describ-
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Fig. 6. Difference between
NNN output and the aver-
age of the 7 NPP models
(red: NNN overestimates) 

(kgC m–2 yr–1)
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ing sensitivity to climate change independent of a
given scenario.

The first question to address concerns the direction
in which we should vary the climate for the purposes of
our calculations. It would appear prudent to choose the
direction promising the maximum possible change in
NPP, i.e. the measure we propose for climate sensi-
tivity is the maximum rate of change in NPP at a given
point in climate space, when climate is varied by a
given, tiny amount in any possible direction. For exam-
ple, this maximum change could constitute increased
insolation, precipitation and temperature with an em-
phasis on summer precipitation in one area and an
increase mainly in spring and autumn temperature in
another. Mathematically speaking, we define the mag-
nitude of the gradient of the 36-dimensional NPP func-
tion defined by NNN as the climate sensitivity of NPP.

3.1. Correction of the climate for the effects of
altitude and insolation

The current variation of the climate variables over
the globe is controlled to a large degree by factors that
are constant over a time scale far exceeding anthropo-
genic influence. Therefore, it is useful to first remove
the most important of these influences, which are
undoubtedly the influences of the altitude of each pixel
and insolation at the top of the atmosphere (which is a
fixed function of latitude) on temperature. To identify
this influence, we fitted the temperature data for each
month to a simple linear model:

T =  c + α totalstotal + αDecsDec + βh (1)

thus predicting the monthly mean temperature T as a
function of the sum of the mean monthly insolations
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Fig. 7. Water limitation
of NPP as calculated by
NNN: the factor of the
relative NPP increase in
response to additional 

precipitation

Fig. 8. 1–α; 0: humid, 1:
arid. The aridity coeffi-
cient α is obtained from
a functional soil water 

model
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stotal, altitude h and the December insolation sDec. The
latter gives us important information about the annual
insolation cycle, which is much stronger at higher lati-
tudes. The altitude data used is the ETOPO5 global
digital elevation data set with a 5’ × 5’ resolution
(USNGDC 1988), averaged over 0.5° × 0.5° pixels. The
coefficients α total, αDec and β have been determined by a
simple linear least-square fit of the climate data for
each month and can be found, together with the linear
correlation coefficients r2, in Table 2. The distribution of
the data points compared to the linear model is de-
picted for January, as an example, in Fig. 9. The re-
maining undeclared variation is due to the more com-
plex determinants of the climate system, which can be
subject to anthropogenic climate change. Therefore, for
the further discussion of the variation of climate, we will
use the difference between the temperature contribu-
tion as defined by Eq. (1) and the actual temperature, as
shown, for January, as an example, in Fig. 10.

Like temperature, insolation at the surface is
strongly influenced by the geometry of the Earth and
its movements. Therefore, for our considerations here,
we use relative sunshine time , instead of insolation, as
the input variable for NNN.

3.2. Finding the right metric for variations in
climate space

The next question concerns the metric in our 36-
dimensional climate space, i.e. how do we define a
common measure for the units of temperature, precip-
itation and relative sunshine? To answer this question,
some assumptions must be made as to the likelihood of
certain changes in climate. Our proposal is to take the
current spatial variation in these climate variables
throughout the world as an approximate measure of
this likelihood.

The simplest approach would be to weigh each vari-
able according to the standard deviation σ it exhibits
throughout the world (z-norm). However, since we find
very high correlations between some climate variables
(e.g. between January temperature and February tem-
perature) it would seem to make little sense to vary
them independently of one another; this would alter
the correlations between them, which would contra-
dict our assumption that climate change potential is
related to today’s spatial variation. We therefore leave
the space of simple climate variables after the z-trans-
formation and enter into the realm of principle compo-
nent space, which provides a statistically more natural
description of the climate. In other words, we calculate
the principal components of the existing climate and
transform the climate data into this basis. Thereby we
ensure that changes along these axes are in accor-
dance with today’s correlation between the different
variables and that the current spatial distribution in
each variable has the identical σ of 1. To illustrate
this double transformation, a 2-dimensional example
is shown in Appendix C.

In our calculation, principal component analysis
(PCA) ensures that the correlations between different
variables are preserved. In contrast to many other
applications of PCA, we do not use it here for data
reduction purposes, since all components are retained,
albeit weighted, as described above, by the degree of
their explanation of the variance.
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Table 2. Coefficients for Eq. (1) for the different months, to-
gether with the linear correlation coefficient r2. PAR: photo-

synthetically active radiation

Month c α total αDec β r2

(°C) (°C m2 d [Wh PAR]–1) (°C m–1)

Jan –56.8 0.00069 0.00372 –0.00436 0.912 
Feb –62.2 0.00084 0.00259 –0.00403 0.926
Mar –72.4 0.00118 –0.00038 –0.00414 0.947
Apr –67.2 0.00128 –0.00252 –0.00414 0.948
May –49.1 0.00111 –0.00294 –0.00386 0.922
Jun –35.9 0.00100 –0.00354 –0.00379 0.877
Jul –33.8 0.00104 –0.00449 –0.00396 0.865
Aug –38.6 0.00109 –0.00452 –0.00417 0.911
Sep –45.0 0.00109 –0.00338 –0.00444 0.947
Oct –53.7 0.00107 –0.00179 –0.00458 0.956
Nov –60.3 0.00098 0.00045 –0.00456 0.931
Dec –57.4 0.00076 0.00282 –0.00461 0.914

Fig. 9. The contribution of insolation to January temperature
(for the southern hemisphere a 6 mo shift is applied) at sea
level as estimated by Eq. (1) compared to the mean-altitude-
corrected January temperatures T ’ derived by T ’ = Tc – βh
from the mean January temperature Tc from the CLIMATE2.1
database (dots). The greater variation in the northern lati-
tudes is due to greater land mass generating more inhomo-
geneous temperature regimes (e.g. continental vs maritime
climate). Due to the relative small number of land pixels in the
south the overall fit is reasonable only north of about 35° S,
where it shows the influence of insolation on temperature
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3.3. Resulting sensitivity of NPP

As discussed before, we propose to index climate
sensitivity by calculating the gradient in principal com-
ponent space:

(2)

(3)

(4)

Here, S is the climate sensitivity, C contains the 36
original climate variables corrected for the influence of
altitude and latitude, and PCi are the 36 principal com-
ponents on which climate space has been projected, as
discussed above. According to this calculation, S is the
largest slope of the NPP function in principal compo-
nent space. As discussed in Section 2.2, the ANN

generates 15 different instances of the NPP function.
The gradients derived from these different instances
were averaged; the resulting map of global climate
sensitivity of NPP is shown in Fig. 11 (an enlargement
for a part of Europe is shown in Fig. 12). The standard
deviation of the set of 15 different gradients at a given
pixel can be viewed as a measure for the uncertainty of
the gradient due to uncertainties in optimizing the
statistical model NNN, and is shown in Fig. 13.

The most sensitive areas are southern and eastern
Africa, in the Maghreb and Spain, in western Kazakh-
stan, in eastern Brazil and central Argentina and in
Mexico and the US Midwest as well as almost all of
Australia. Clearly, very low sensitivity can be found in
the extreme deserts (e.g. the Sahara) as well as in
the tropical rainforest belts of Amazonia, Congo and
Indonesia. The uncertainty of the sensitivity as shown
in Fig. 13 shows no significant pattern and appears to
be independent of the areas of particular sensitivity
which are mostly rather reliable.
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Fig. 10. Deviation of the
actual mean January
temperature from the
expected temperature
according to height and
latitude, constructed by
subtracting the tem-
perature resulting from
Eq. (1) from the temp-
erature found in CLI-
MATE2.1. The effect of
ocean currents and espe-
cially of the Gulf Stream,
warming western Eu-
rope considerably com-
pared to other regions of
the same latitude and alti-
tude, can be seen quite 

clearly

Fig. 11. Global pattern of
the sensitivity of NPP to-
wards climate change.
(average of 15 gradients) 

(kgC m–2 yr–1 σ–1)
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As can be seen in Fig. 11, high sensitivity correlates
well with semi-arid regions such as those depicted in
orange in Fig. 8. To the first order, this is explainable by
the fact that spatial rainfall variation constitutes a very
large part of the total variation in the climate data after
the removal of the direct latitudinal and altitudinal
effects by the use of Eq. (1). In the very arid regions, such
as the Sahara, and the other regions shown in red in
Fig. 8, the sensitivity is very low, because a small change
in the climate variables will still not enable much vege-
tation growth. Similarly the humid areas (e.g. Amazonia)
are equally relatively insensitive, since there precipita-
tion is so plentiful that a small change will not diminish
NPP. This explanation does of course exclude other
variables which can also be very important, such as the
temperature in far northern latitudes, where vegetation
is mainly limited by temperatures that are too low.

The fact that the sensitivity in the Sahel is consider-
ably lower than in other semi-arid parts of the planet,
such as southern Africa or the western US, is some-
what unexpected at a first glance. It can be explained

using the observation that the main difference be-
tween the middle-sensitivity values in the Sahel and
the very high sensitivity regions is how pronounced
the rainy season is: the Sahel has a very large ratio of
monthly rainfall in the rainy season to rainfall in the
dry season, whereas in southern Africa this intra-
annual variation is much lower. In other words, in the
Sahel there are in each year some months where rain-
fall is much lower than needed for significant NPP and
in other months it is too high to act as a strongly limit-
ing factor. As argued above for the cases of desert
regions and very humid regions, this tends to cause
sensitivity to be lower than that of semi-arid regions
with less variable rainfall, i.e. those which have rela-
tively low precipitation throughout the year.

Knowing about the difficulties in the description of
rainfall with high interannual variation, we were at first
quite doubtful about this result, as it could be that, for ex-
ample southern Africa has an intra-annual variability in
rainfall as high as that of the Sahel, but, as the rainy sea-
son is not as regular as in the Sahel (where it occurs in
the same months every year), this variability might be
hidden by the averaging process during the assemblage
of the climatology used here. To check for this interan-
nual averaging problem, we took a climate data set with
climate normals for each month in the years 1931–1960
(New et al. 1999) and averaged the precipitation in such
a way that the months in each year were shifted until the
rainy season was in the same month for each year
(similar to the procedure described in Lüdeke et al. 1994)
and used this data to recalculate the climate sensitivity of
the NPP as described in this section, including the cal-
culation of another set of principal components and the
necessary transformations. This whole procedure, how-
ever, had no effect on the overall picture of sensitivity;
the Sahel was again significantly less sensitive than
other semi-arid areas. Therefore we have a considerable
degree of confidence in the result depicted in Fig. 11.
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Fig. 12. An enlargement of Fig. 11 showing a part of Europe 
(kgC m–2 yr–1 σ–1)

Fig. 13. Uncertainty of
the evaluation of climate
sensitivity as indexed by
the standard deviation of
the gradients of the 15
different instances of the
ANN (kgC m–2 yr–1 σ–1).
Mediterranean climates
and semi dry regions
display peak uncertainty
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3.4. Country-specific sensitivity

To make the result shown in Fig. 11 useful for policy
analysis,we aggregate the sensitivity to the country
level. The simplest estimate of country-specific sensi-
tivity would be the spatial average of the sensitivity of
each country. However, since the areas with very low
productivity are generally of lesser importance to the
countries, we excluded from our analysis all pixels
with an NPP of less than 0.1 kgC m–2 yr–1 (i.e. 23% of
all pixels) and averaged the remaining pixels for each
country. This is of course only a rough estimate of the
sensitivity of each country’s vegetation concerning cli-
mate change, e.g. it does not take into account the
impact of irrigation and water flows on vegetation, and
it considers the different importance of different land
areas only very roughly. This country-specific analysis
can therefore only be regarded as a first try. However,
according to our knowledge, it is the first attempt to
define and calculate country-specific vegetation sensi-
tivity concerning climate change. The results can be
seen in Fig. 14 and Table 3.

4. CONCLUSION AND OUTLOOK

The main results of the presented study consist of:
(1) the NNN, a neural network based model for the very
fast calculation of NPP, and (2) a new method for the
definition and evaluation of the climate sensitivity of
NPP, which has been aggregated to the country level.

The NNN model presented here can be seen in the
tradition of the Miami model (Lieth 1975); the climate
characterization was extended from annual precipita-
tion and annual mean temperature to monthly values
(now including light intensity) and the ‘training set’ for
a non-linear parameterized function was extended
from about 100 observed NPP values to about 50 000
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Fig. 14. Average of the
sensitivity of NPP to-
wards climate change
as shown in Fig. 11 for
each country, neglect-
ing the effect of desert 

areas

Table 3. Estimates of sensitivities of net primary production to-
wards climate change of some of the 150 countries considered
in this study. An asterisk denotes countries where despite
the exclusion of low production areas large inhomogeneities 
occur, implying careful interpretation of the average values

Rank Sensitivity Country
(kgC m–2 yr–1 σ–1)

1 0.71 Algeria
2 0.70 Tunisia
3 0.70 Morocco
4 0.68 Botswana
5 0.66 Saudi Arabia
6 0.65 Libya
7 0.65 Namibia
8 0.62 Somalia
9 0.61 Oman
10 0.61 Jordan
11 0.61 Australia*
12 0.60 Syria Republic
13 0.60 Yemen
14 0.58 South Africa
15 0.58 Egypt
17 0.58 Israel
18 0.56 Pakistan
19 0.56 Iran
20 0.55 Kenya
24 0.54 Mexico
25 0.53 Spain
29 0.50 Turkey
36 0.45 Argentina
48 0.38 India
49 0.37 United States*
59 0.34 Italy
64 0.30 Nigeria
73 0.27 France
76 0.26 China*
77 0.26 Bangladesh
91 0.23 Germany
92 0.23 Canada*
95 0.22 Brazil*
107 0.20 United Kingdom
114 0.19 Russia*
119 0.17 Zaire
121 0.17 Philippines
145 0.10 Indonesia
150 0.07 Brunei



Clim Res 21: 43–57, 2002

NPP values, which were generated using functional
global vegetation models as ‘intelligent interpolation
tools’ of several hundred observed NPP values so far.

Of course one has to keep in mind the general limita-
tions of the ‘quasi-static’ approach (series of equilib-
rium results) used in this study for climate impact
analysis. A next step could therefore be the develop-
ment of a simple model which in a similar manner re-
produces the expert consensus on the transient behav-
ior of global plant productivity. Here, the results from
non-equilibrium biogeochemical models (e.g. the FBM
[Lüdeke et al. 1994]: time scale of days to several
decades) to dynamic vegetation models (e.g. IBIS
[Foley et al. 1996]: time scale of days to centuries) could
provide the knowledge basis for another ‘reduced-form
model’ which would probably be based on simple dif-
ferential equations, as, for example developed for the
physical climate system to reproduce the ‘essence’ of
the results of complex GCMs (Hasselmann et al. 1997).

A worthwhile extension in the quasi-static frame-
work would be the inclusion of the CO2 fertilization
effect into the statistical model based on the average
of the equilibrium NPP predictions of the considered
functional vegetation models in a doubled-CO2 cli-
mate. One problem is that the expert disagreement in
this case is much greater than in the case of today’s
NPP field. The method would be to include 1 addi-
tional independent variable, the atmospheric CO2 con-

centration, and extend the training set by a second
global NPP field.

As for the second main result, we have defined and
calculated, to our knowledge for the first time, a global
NPP climate-sensitivity map, independent of specific
climate scenarios. This permits a detailed description
of regions with a high potential for being affected by
climate change, which includes, in the worst case, a
decisive negative effect for the NPP of a given region.
The aggregation to the country level in a way that cor-
rects for the effects of the very insensitive deserts
makes these results applicable to policy analysis.

Widening the scope of this particular study, the
method applied here may be used in general to deduce
the climate sensitivity of sufficiently detailed expert-
guess-fields, originating from different models (as in
this paper) or from interpolated observations.
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Appendix A. Mean absolute, mean square and maximum absolute error of the NPP-model average

Let us assume that NPPi
obs, i = 1, …, N, is a set of N correctly

observed NPP values which would allow a complete verifi-
cation of the results of M different vegetation models, NPPi

k,
k = 1, …, M (which is unfortunately not possible yet). Then:

would be the mean absolute error of vegetation model k.
After averaging the models for every point i:

one obtains for this NPP distribution the following mean
absolute error:

which means that the mean absolute error of the averaged
model result, 

–
favg

abs, is smaller than (or equal to) the average of
the mean absolute errors of the single models, � –fk

abs�. There-
fore it is advantageous (or neutral, in the unlikely case that
all models homogeneously under- or overestimate NPPi

obs

for all locations i) to take the average of the model results
instead of using one arbitrarily chosen model. To illustrate
the above arguments, a simple numerical example for one
grid element (N = 1) and 3 models (M = 3) is given in Fig. 15.
A similar argument holds for the mean square error 
–
favg

sqr of the averaged ‘best guess’:

using the relation:

which holds true for all a ∈ �M.
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Appendix A (continued)

With similar arguments, it is possible to show that the
expectation value of the maximum absolute error in the case
of the arbitrary choice of one model, �fk

max � is greater than
the maximum absolute error of the averaged model �favg

max �.
Let:

(5)

and:

(6)

Then we can identify an upper boundary for the absolute
error of the averaged model for an arbitrary point j:

(7)

Comparing Eqs. (6) & (7), considering Eq. (5), one obtains

where, again, the equal sign is valid only for very unlikely
situations (e.g. in the case that the maximum absolute errors
of all models are at the same location).
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Fig. 15. Example of the advantage of using the average of
several models instead of choosing 1 model arbitrarily with
respect to the expectation value of the mean absolute error.
Without loss of generality a ‘1 grid element/3 models’-
example is presented. In this case the ‘mean absolute error’ 

becomes a simple ‘absolute error’

Appendix B. Structure and function of the neural network

We use a 3-layer feed-forward ANN as depicted in Fig. 16.
In algebraic notation the ANN can be described by:

(8)

where the Ck are the 36 climate variables at a given grid
cell, ƒ(x) = (1 + e–x)–1 is the so-called activation function, and

the 835 different ω and θ are the parameters that allow the
function to be fitted to the data by the back-propagation
learning algorithm.
The climate and NPP data were normalized between 0
and 1 independently for each of the 36 variables. Using the
data for the 64 283 grid elements for which climate data and
NPP model output were available, we formed a training
set (49 964 grid elements) and a test set (North America:
12 519 grid elements). The 835 parameters were initialized
randomly between –1 and 1. The approximation of the opti-
mal parameterization was made using the standard online
back-propagation algorithm, which tries to minimize the
mean square error between the ANN and the training set,
based on steepest descent. The ANN is ‘trained’ with 30 000
training cycles, each using all 49 964 data points, with the
step size parameter (Zell 1994) decreasing from 0.1 to 0.008.
The parameter sets which best fit the test set found during
the training were chosen and the best of these for 30 dif-
ferent runs is described here as NNN, while the 15 best
instances are used to calculate the climate sensitivity and its
standard deviation as shown in Figs. 11 & 13.
We also tried various other ANN topologies, including
ANNs without direct connections between the input and the
output layer, ANNs with 2 hidden layers, ANNs with less
nodes in the hidden layer and ANNs with radial basis func-
tions instead of ‘neurons’, with various numbers of radial
basis functions (the centers of the radial basis functions
were found using self-organzing maps; Kohonen 1997); but
all these networks were inferior to the 3-layer ANN used
here in their ability to reproduce the training and test set.
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Fig. 16. Structure of the neural network applied for NNN: 
36 input nodes for the climatology. Output node: NPP
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Appendix C. 2-dimensional example for the double transformation described in Section 3.2

To illustrate the double transformation used in Section 3.2
(firstly a z-transformation and then a transformation into
principal component space), we have calculated an exam-
ple of this procedure in 2 dimensions, since the procedure in
the whole 36-dimensional space is difficult to visualize. As
sample variables, we took the January and December tem-
peratures, corrected as described in Section 3.1. As can be
seen in Fig. 17, the 2 temperatures are very closely corre-
lated. Fig. 18 shows the temperatures after the z-transfor-
mation, together with the 2 principal components describ-
ing this data. Now the data is measured in standard
deviations, making these temperatures directly compara-
ble, both mutually and to other variables such as precipita-
tion. The first principal component calculated by the PCA is
parallel to the main direction of the ‘data cloud’, while the
second, explaining much less variance, is perpendicular to
the first. The length of both principal components is equal to
the standard deviation of the data projected on them. Using
these 2 principal components as unit vectors, we transform
the data into principal component space as shown in Fig. 19.
Now the ‘data cloud’ no longer shows any systematic direc-
tion and is as circular as possible using linear transforma-
tions; this is exactly what is needed to make our gradient
approach, which weighs each axis identically, feasible. If we
had taken the data ‘untreated’ as in Fig. 17, the result would
depend on the units used, and even after the z-transforma-
tion (Fig. 18), a straightforward calculation of the gradient
would have overestimated the importance of changes
occurring in less likely directions, e.g. January temperature
increasing as much as December temperature decreases.

Fig. 17. January and December temperatures as taken from
CLIMATE2.1 and corrected for insolation and altitude as 

shown in Eq. (1)

Fig. 19. As for Fig. 18, but after the projection of the data
onto the 2 principal components. This projection trivially
transforms the 2 principal components onto the first and 
second unit vectors (shown again in green and blue)

Fig. 18. January and December temperatures as in Fig. 17
after the z-transformation. The data is measured here in
standard deviations. The green and blue lines show the 

direction and length of the 2 principal components
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