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4.1  Introduction 

 
There is a long-lasting and controversial discourse on the role of 
quantitative and qualitative data and methods in science, at least 
since the “Newtonian turn” in physics in the 17th century. After this 
successful step in the mathematical formalization of a large branch 
of physics, nowadays called “classical mechanics”, it was used as a 
kind of paradigmatic case by many theorists of science. Thereby, 
standards for scientific processes and theory structures were im-
posed on realms of science dealing with dramatically different sub-
jects, and having different purposes than classical mechanics. This 
was controversially discussed within the debate on positivism, but it 
still has a strong influence on our understanding of science.    
Why is this relevant for the discussion of quantitative and qualitative 
concepts in foresight? 
Firstly, this paradigmatic case deals with the motion of objects in 
space (planets, cannonballs, cars), i.e. it deals explicitly with the 
time dimension. Therefore, a new kind of mathematics was devel-
oped by Newton and Leibniz: the differential calculus. The general 
laws of motion could then be formulated as a set of differential 
equations which calculate the (observed or future) time courses of 
the object’s location from given initial (and boundary) conditions. 
These laws of motion described a number of observations and ex-
periments so well that, at the beginning of the 19th century, a 
mechanistic world view was formulated, assuming that, once set in 
motion, the universe would work like clockwork, following eternally 
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the Newtonian laws of motion (theological complications could be 
resolved1). Although this extreme view was revised for several rea-
sons2, the relation between the explanation of phenomena and their 
prediction is still a vital point for the controversial understandings of 
foresight.            
 Secondly, the cited paradigmatic case is a fully quantitative theory 
where each basic concept (like “length”) is operationalized by a 
measurement procedure (“compare with the ‘mètre des archives’ in 
Paris”) which assigns the respective variable (“s”) a real number 
(“5.51m”). This constitutes a clear-cut relation between the quantita-
tive theory and its real-world subject, and makes a variable-oriented 
approach to scientific explanation and prediction very appealing. 
Thirdly, the Newtonian laws of motion are valid for a huge number 
of different experimental and observed situations (all macroscopic 
mechanical phenomena with relative velocities significantly less 
than the speed of light). This implies that science is able to find 
general laws with very wide ranges of applicability.  
In the next section we analyse the shortcomings of epistemological 
approaches to prediction which are oriented to the above paradig-
matic case, while it appears as a more or less singular stroke of 
luck in the history of science. In the following section we then dis-
cuss the role of quantitative models in foresight studies. After a 
short overview of the four main approaches to foresight according to 
Kreibich (2006) we proceed with a discussion of qualitative con-
cepts compared with quantitative concepts in science, and conclude 
with some approaches which bridge the gap between the two tradi-
tions. 
  

                                                 
1 E.g. by reformulating the laws of motion as a variational principle by La-
grange (18th century), implying more a (divine) purpose of the whole tra-
jectory/history than reducing the options of God to defining the initial condi-
tion and the Newtonian laws. 
2 Even by inner-physical reasons like macroscopic irreversibly or, later, de-
terministic chaos. 
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4.2  Explanation and Prediction 

 
As mentioned above, within the epistemological position of logical 
positivism, there is no difference in the inferential pattern between 
explanation and prediction. Following the argumentation of Aligica 
(2003) this can best be demonstrated by the position of one of the 
proponents of the “nomologico-deductive” school of explanation: 
“An explanation (...) is not complete unless it might as well have 
functioned as a prediction; if the final event can be derived from the 
initial conditions and universal hypotheses stated in the explanation, 
then it might as well have been predicted, before it actually hap-
pened, on the basis of a knowledge of the initial conditions and 
general laws” (Hempel, 1963). 
Thus the explanation of a phenomenon includes the information 
about antecedent conditions and general causal laws. Hempel 
called these “covering-laws” or “nomologico-deductive” argument 
when an observed phenomenon can be reconstructed along these 
lines. 
The main arguments against the above concept as a general struc-
ture of valid science (Rescher, 1998; Aligica, 2003) include histori-
cal but also purely logical aspects: 
 there are generally accepted and important scientific explana-

tions without predictive power (e.g. the mechanisms which 
generate earthquakes or the evolutionary explanations of the 
emergence of new species); 

 there are successful predictive methods without any explana-
tory content like time series analysis and correlational or ana-
logical  approaches; 

 the history of science shows many examples of successful 
predictions based on poor or even wrong explanations, as 
well as wrong predictions based on good explanations.  

The latter emphasizes the role of explanatory scientific theories as 
steps in an ongoing process instead of being already “close to the 
truth”, and reflects on the fact that empirical theories (in contrast to 
mathematical statements) cannot be proved in a strictly logical 
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sense but, according to Popper (2004), only be falsified.  
This makes clear that – at least for a large part of relevant scientific 
predictive endeavours – the nomologico-deductive approach is not 
the most promising one: possibly either no general laws exist or the 
number of observed instances is, for systematic reasons, too low to 
perform a significant formal falsification procedure.     
Aligica (2003) summarizes: “In the prediction’s domain even the 
best confirmed theories are no more than reasonable and provi-
sional estimates of the truth.” And he concludes by stressing the 
principal epistemic difference between explanation and prediction 
(or retrodiction3): 
“Explanations try to reveal connections between events, phenome-
na and states and if possible to reveal the fact that they are part of 
larger patterns, regularities and laws.  
The primary function of predictions and retrodictions is to acquire 
and offer more knowledge of specific, concrete events and occur-
rences. The idea is to export from premises the necessary epistem-
ic weight needed to gain credibility. The primary function of such ar-
guments is simply to establish or prove the conclusion. 
Consequently in a prediction or retrodiction argument, the applica-
tion of general laws is not essential. An argument that makes ap-
peal to general laws is always welcome but still it is as good as any 
other argument; and thus in the last instance it is inessential. Using 
the covering-law model to make a prediction or retrodiction is suffi-
cient, but not necessary. Statements of restricted regularities, quasi-
laws, statistical laws, the so-called common sense generalizations 
or accidental generalizations can viably be employed in projective 
arguments.” 
Even if this argumentation seems self-evident to many practitioners 
in Future Studies it becomes crucial in foresight projects which in-
clude researchers from those disciplines where a covering-law type-
understanding of science is (still) dominant. In climate change, eco-
nomic or ecological theories quantitative (dynamic) modelling plays 

                                                 
3 Retrodiction means the prediction of an event in the past from initial sit-
uations and conditions even further in the past. 



5 

a widely accepted role, and these models are often assumed by 
their authors to operationalize Hempel’s general laws, allowing for 
explanation and prediction at the same time – consequently they 
are hardly inclined to accept that their model-based predictions play 
a comparable role to “common sense generalizations” in foresight. 
 
 

4.3  The Role of Quantitative Modelling in Fore-
sight 

 
Indeed, the argument has to be handled with care: some of these 
predictive models are closer to the above-mentioned epistemologi-
cal “stroke of luck” than others, in particular the atmospheric climate 
forecast models (known as Atmospheric General Circulation Mod-
els) which incorporate a great deal of Newtonian mechanics and 
can dispose of a large (and increasing) amount of standardized da-
ta for validation via retrodiction. Of course the future could in princi-
ple falsify the model, but it is anchored very deeply in systematically 
accumulated empirical evidence. But already the next step to an-
swer the question what the global climate will look like under a giv-
en human impact scenario requires more complex physical earth 
system models which integrate oceans, the kryosphere and bio-
geochemical cycles. Although these additional components are still 
purely subject to the laws of nature, the data situation for validation 
becomes more critical and (consequently?) the underlying theories 
more controversial. Here the argument certainly becomes more rel-
evant: that our current theoretical understanding may be more a his-
torical phase than already “close to the truth”. The fact that the theo-
ry has the same form (a dynamic quantitative model) as others 
which are closer to Hempel’s paradigm should not be of any rele-
vance in this context – its role in foresight exercises becomes rela-
tivized and in this case: “An argument that makes appeal to general 
laws is always welcome but still it is as good as any other argu-
ment” (Aligica, 2003). 
To stay with the forecast-example of global climate change as-
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sessments the next step using what are called Integrated Assess-
ment Models (IAMs) is to incorporate human actions and reactions 
into the formal model on the basis of the plausible argument that 
(anthropogenic) changes in the physical environment will have 
feedbacks on human actions – a relation which questions the pos-
sibility of reasonable a priori definitions of, for example, scenarios of 
anthropogenic CO2 emissions. This means that socio-economic 
theories enter the physical earth system models and with them all 
specific problems like reflexivity and the related problem of the sep-
aration of the observer (modeler) from its subject (e.g. society). 
While quantitative modelling approaches are well established in 
economics, these are highly contested in sociology and policy sci-
ence. But, even in economics – is similar to the situation described 
for physical earth system models – the quantified theory is far from 
Hempel’s paradigm: independent of the obviously poor quality of 
predictions4 the basic hypotheses of mainstream theory are still 
used to guide economic policies.  
IAM modellers are well aware of these shortcomings in the predic-
tive ability of their integrated models, and make attempts to quantify 
the uncertainty of their forecasts. Meanwhile, there are classifica-
tions of the sources of uncertainty in quantitative models, ranging 
from numerical failures to uncertainties in the choice of relevant var-
iables and their interactions (structural uncertainties5). This also 
spans the range of the possibility of a formal uncertainty assess-
ment from “manageable” to “almost impossible”.  
To deal with this situation, Jan Rotmans, an experienced IAM mod-
eller (Rotmans and de Vries, 1997) originally called for a proper in-
terpretation of quantitative forecasts of large integrated models: 
“Don’t trust the numbers, just trust the trends”. This seems to be a 
possibility for a more careful interpretation of quantitative prediction, 
although it is not clear under which conditions totally uncertain 

                                                 
4 Poor predictions of the economic cycle, wrongly predicted convergence 
of developing and developed countries, etc. 
5 For an interesting approach to deal with structural uncertainty, see Van 
Asselt and Rotmans (2002). They suggest a systematic exploration of dif-
ferent combinations of modules of an IAM along ideas of cultural theory. 
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numbers produce trustworthy trends. 
From our experience in predictive formal modeling activities – most-
ly for purposes of policy assessment (e.g. Petschel-Held and Lü-
deke, 2001; Eisenack et al., 2006) – we would argue that the whole 
modelling process – not only the resulting prediction – is the rele-
vant input into an assessment or foresight exercise. If all assump-
tions underlying the model are made explicit and transparent, math-
ematics (supported by computers) is an unrivalled means for correct 
and comprehensive logical deduction. A model used in this manner 
in a foresight process provides more “food for thought” than a black 
box, and contributes to reasonable projections.  
This understanding of the role of quantitative modelling in foresight 
has far-reaching consequences as it demands that a model used in 
foresight  
 can either be made fully transparent with respect to its under-

lying assumptions to everybody who interprets its predictions  
 or is close to the paradigmatic case of classical mechanics 

(see the preceding section), and has proved its predictive ca-
pacity in many instances under widely varying conditions.   

In the “integration”-section we present an approach to dynamic 
modelling which is intrinsically appropriate to fulfill the first require-
ment. 
So far we have discussed the role of the most complex quantitative 
concept, dynamic modelling based on assumptions on mechanisms 
and interactions. This is mathematically realized either in the form of 
deterministic/ stochastic ordinary/partial differential equations or 
their discrete counterparts. Our starting point was the critique of the 
generalization of the epistemic identity of prediction and explana-
tion, a position which is oriented at a quantitative theory exactly of 
this form. 
 As mentioned already, there are quantitative methods relevant for 
foresight without explanatory pretensions, e.g. correlational ap-
proaches and time series analysis. Particularly in situations where 
only poor mechanistic knowledge is available, these open the pos-
sibility for temporal extrapolation. But one should keep in mind that 
virtually all of these statistical extrapolation methods are implicitly 
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related to classes of mechanistic assumptions. To take a simple ex-
ample, to choose a linear extrapolation instead of a quadratic one, 
even if the first reproduces the observed time series a bit better, im-
plies the assumption that there is no significant positive feedback, 
and that this will be also the case in future. We would therefore ar-
gue that the mechanistic assumptions which underlie the predic-
tions should be made transparent whenever possible. 
 
 

4.4  Approaches to Foresight 

 
From the practice of foresight, Kreibich (2006) identifies four differ-
ent approaches, which show that the paradigm discussed above 
covers only a small part of relevant predictive abilities: 
 The explorative empirical-analytical approach based on 

available explicit knowledge and actual data, probable and 
possible future developments are systematized under explic-
it assumptions and boundary conditions. These develop-
ments are then analysed according to specific rules. 

 The normative-intuitive approach Experience and more gen-
erally, partly tacit knowledge are used in an imaginative and 
creative way to generate desirable visions of the future.    

 The planning approach Here the focus is the process of 
shaping the future towards a desirable vision. Stocks of 
knowledge and experience are used creatively to suggest 
new communication, decision-making, participation and im-
plementation processes.   

 The communicative-participative approach The integration of 
actors from different societal sectors increases the amount 
of knowledge on possible future developments. In particular 
the aspects of shaping and implementation possibilities be-
come substantiated.  The same is valid for the normative 
aspect (desirability).  

Practical foresight exercises show that usually a combination of the 
above approaches is applied. For example, in their future study on 
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global sustainability The great transition, Raskin et al. (2002) ap-
plied a combination of the first three approaches, which is nicely 
documented by the structure of their final report. It starts in an ex-
plorative empirical-analytical manner by analysing historical transi-
tions and developing from these global scenarios (see Figure 4.1) 
by applying a defined set of philosophies6.  
There is some overlap to the normative-intuitive approach as the set 
of applied philosophies is not sufficient to define the different future 
visions, and there is a strong normative component in imagining the 
“new sustainability paradigm”.  
After that the “planning approach” is applied, asking how the desir-
able scenario could be implemented – the results are clearly repre-
sented in Figures 4.2 and 4.3. 
 
 
 

 
 
Figure 4.1 Scenario structure with illustrative patterns (after Gallopín et al., 1997) 

                                                 
6 Smith, Keynes, Malthus, Hobbes, Morris, Mill. 
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Figure 4.2 “Market forces”-scenario, where well-being, consumption and materi-
al/energetic throughput increase in parallel, while the consumption gap between the rich 
and the poor is increasing 

 

 

 

Figure 4.3  “Instruments” for a transition to sustainability: the “lifestyles wedge”, decou-
pling well-being from consumption; the “dematerialization wedge”, decoupling consump-
tion from material/energetic throughput; and the “equity clamp”, forcing the redistribution 
of wealth on the globe (after Raskin et al., 2002) 

With respect to the choice of qualitative and quantitative methods in 
this future study – as in many others – a mix was applied, ranging 
from the citation of results from models as discussed in the preced-
ing two sections to qualitative arguments, while the use of quantita-
tive approaches is concentrated in approaches (i) and (iii). Howev-
er, it is instructive to have a brief look at some of the specifics of 
these two methodological schools in order to sharpen the view for 
the problem of the most satisfactory choice of method. 
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4.5  Qualitative Versus Quantitative Methods 

 
A common property of all quantitative methods in foresight – from 
complex dynamic modeling to simple statistical correlations – is that 
they are variable-oriented. This has far-reaching consequences. 
Firstly, all of these methods begin after the variables are defined – 
so the obviously crucial step of variable definition lies outside their 
scope. 
  Related to this, the concept of the quantitative variable is two-
edged: on the one hand, it is clearly operationalized by a specific 
measuring process, thereby standardized and highly comparable, 
independent of the location and time of its measurement. On the 
other hand, this has to be paid for by “context stripping”, i.e. it is ab-
stracted from the original context in which it had a specific meaning. 
 However, when using quantitative variables the systematic compar-
ison of a large number of cases becomes feasible – which is im-
portant for the explorative empirical-analytical approach in foresight. 
With respect to the statistical evaluation of data intended to provide 
a basis for temporal extrapolation or to obtain relations between 
variables which can, for example, be used in dynamic system mod-
els, one specific point has to be stressed: “outliers are no problem”. 
This means that it is assumed to be irrelevant when the identified in-
terrelation is invalid for some of the observed cases.  
The statistical use of quantitative variables has to be distinguished 
from their use in system analytic models. Here the time-courses of 
the variables are deduced from their hypothesized interrelations 
which allow complex feedback nets to be evaluated. This is appli-
cable in foresight if one can formulate explicitly and quantitatively 
the mechanisms which contribute to the process which has to be 
predicted. A further condition is that the assumed interrelations stay 
valid, and the chosen variables stay relevant during the forecast pe-
riod.     
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Quantitative variables may be measured on different scales, allow-
ing for different mathematical operations: 

a. ratio – all mathematical operations;  
b. interval – differences; 
c. ordinal – greater than, less than; 
d. nominal – discrete, no ordinal relation. 

The less is the demand for measurement the fewer the number of 
mathematical operations which are possible on the variables. Sys-
tem-theoretical models need variables on a ratio scale while statisti-
cal evaluations are possible for all scales.   
The characteristics of qualitative data and methods are significantly 
different. The form of the data is much richer – one can almost state 
that every type of information which is not a variable is qualitative 
data. Typical examples are a text, a photo, a movie, etc. The char-
acter is exactly the opposite of the “context-stripped” variable: which 
is a “meaningful but complex configuration of events and structures” 
or a “singular, whole entity purposefully selected”.  
Retrieval techniques for such qualitative data are, amongst others, 
interviews, observations, oral history, focus groups, and Delphi 
groups, which establishes the link to the communicative-
participative approach in foresight. 
Data analysis techniques are hermeneutics (evaluating text and 
context), grounded theory (identify concepts across different texts), 
and others. One important aspect in qualitative methodology is the 
concentration on each single case. It may even be productive to 
look for the extreme cases rather than for the typical – in clear con-
trast to the treatment of “outliers” in quantitative statistical ap-
proaches. 
The related process of thinking is a more circular one: during the 
process of foresight activities definitions, and even aims, may be 
modified if appropriate – this, again, is in clear contrast to variable-
oriented foresight which is more linear, in the sense that, after the 
initial variable definitions are made, the process has to stay with 
them – at least for a considerable time. 
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4.6  Integration of Qualitative and Quantitative 
Methods 

 
One way to integrate the different methodological traditions is on 
the level of the organization of foresight projects, which allows the 
results of different quantitative and qualitative methods to be inte-
grated. This is certainly a step forward, but does not guarantee the 
mutual understanding of the reasoning behind these results – which 
is a severe shortcoming in the communication process. Therefore, it 
seems to be valuable to look for existing methods at the interface 
between the qualitative and the quantitative tradition. 
One class of these “interface-methods” retains the variable-
orientation (including a more linear research process), but tries to 
deal with weaker scales (as far as is known the following methods 
cover the main ideas in this realm):  
Here one possibility is statistics with multidimensional nominal data: 
as a two-valued nominal variable is already very close to a qualita-
tive concept (something is either green or not), a, for example, clus-
ter algorithm on multidimensional nominal data yields qualitative 
constellations rather than quantitative cluster centroids. On the oth-
er hand, we still have the typical characteristics of ignorance with 
respect to single outliers which is unacceptable for important tradi-
tions of qualitative research.    
This problem disappears if modified system analytical approaches 
on weaker scales are chosen. One example is the qualitative case 
study analysis (QCA) after Ragin (1994) on the basis of Boolean 
Algebra: this uses Boolean variables (with the values true/false) to 
transparently deduce rules applicable for several cases. On the 
other hand, it is still variable-oriented with the typical consequences 
for the research process.        
A more explicitly time-related approach in this class is systems 
analysis with ordinal variables (QDEs) after Kuipers (1994): this 
method allows possible future trend combinations to be deduced 
from very loosely characterized feedback structures – it makes the 
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advantages of systems analysis available for only weakly quantified 
systems. As this approach is rather new, it will be described in 
some more detail in the followings paragraphs. 
QDEs are based on system theoretical process thinking, i.e. the 
state of a system is related to its rate of change. In the realm of 
usual quantitative modelling, this is formalized by differential (since 
Leibnitz and Newton) or difference equations, where explicit numer-
ical relations between the variables and their rates of change are 
needed. In contrast, QDEs try to deduce the time development of 
the variables from a much weaker: namely, a “qualitative” under-
standing of the interactions of the system elements. This qualitative 
understanding can be characterized by the following hierarchy of 
determination: 

1) Which elements are directly related (e.g. A and B are di-
rectly related, A and C are not: A – B) ? 

2) What is the direction of the influences (e.g. B influences A: 
A <- B)? 

3) Is it a strengthening or diminishing influence (e.g. B dimin-
ishes A)? 

4) Is it an influence on the variable or on its rate of change 
(e.g. B diminishes the change of A)?  

Levels 3 and 4 above imply that it is possible to describe the ele-
ments of the system by ordinal scale variables, i.e. a “greater/less 
than” relation can be defined. 
At level 4 of determination, QDEs can be applied and will generate 
the time course of the variables by their trends and trend changes. 
As QDEs are a generalized system analytic method, the boundaries 
of the system, its elements, their qualitative relationships, and ex-
ogenous drivers have to be identified. In all cases where this can be 
done, at least in parts, the method is applicable.  
With respect to the mathematical representation, a QDE can be un-
derstood as a whole class of ordinary differential equations (ODEs), 
which are solved simultaneously. In its simplest form the right-hand 
sides of the ODEs are only defined by their monotonicities, i.e. only 
the signs of the Jacobi matrix elements are known. The results one 
can obtain from such a weak systems characterization (compared 
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with a numerical model) are combinations of trend directions of the 
variables and sequences of such combinations. Depending on the 
input, branching and/or cyclic time developments may be the result, 
i.e. different possible futures. Branching points identify critical stag-
es in the development: depending on influences which are beyond 
the functional resolution of the assumed model, different paths may 
be entered. 
QDEs can be considered as a kind of automatic phase space anal-
ysis which yields possible sequences of monotonicity cells. The al-
gorithm works like a filter: starting with one trend combination, all 
possible successor combinations are generated. Then the algorithm 
filters all transitions which are not in accordance with the given sys-
tem, i.e. the given Jacobi matrix. For the remaining ones, again all 
valid successors are generated, and so on. This results in a “tree” 
where each branch represents a possible sequence of trend combi-
nations or “qualitative trajectory”.  
To apply QDEs, it is necessary to construct an influence diagram 
which depicts the system’s elements and their qualitative relation-
ships. To obtain this, techniques of qualitative data collection (inter-
views, oral history, focus groups, Delphi groups) and data analysis 
(hermeneutics, discourse analysis, grounded theory) can be applied 
(for the potential role of these techniques in the different stages of 
model development and the interpretation of model results, see Lu-
na-Reyes and Andersen, 2003).  
The method was originally applied by Kuipers and his group on 
qualitative physics and human physiology. In the realm of sustaina-
bility science it was applied on smallholder agriculture in developing 
countries, urban development, fisheries management and industrial 
agriculture. In these cases, it was the aim: to calculate possible fu-
ture developments from qualitative systems understanding; to 
choose from these a set of possible futures, i.e. the desirable ones; 
to identify critical branching points; and to assess policy options to 
influence the development positively. 
The strength of QDEs is that powerful mathematical system theoret-
ical methods become available even if only qualitative knowledge of 
the interactions of the system’s elements is available, for example, 
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in the form of an influence diagram. This allows us to fulfill the re-
quirement of the transparency of the model assumptions for the in-
terpreter of the results as formulated earlier in the Section 4.3 on 
the role of quantitative modeling in foresight 
One disadvantage is that, in some cases, the result, i.e. the qualita-
tive trajectories, may be very ambiguous, in the sense that very 
many branching points occur. The extreme case would be that the 
filtering ability of the qualitative model is so weak that almost every 
future development is possible. But this simply means that the input 
– our knowledge of the system – is insufficient to make any fore-
casts.  
Another class of “interface-methods” deals with the systematization 
of a research or forecasting process that integrates quantitative and 
qualitative methods. A relevant example based on our own research 
experiences is the use of qualitative data retrieval and analysis to 
construct and validate/falsify system analytical models (Luna-Reyes 
and Andersen, 2003): the purely deductive part of the whole fore-
cast process is done via systems analysis (e.g. the above-
mentioned QDE approach) while the – extremely important – re-
maining steps are done with qualitative methods. As the qualitative 
steps interact with the system-analytic process at several points, the 
danger of insufficient mutual understanding of systems scientists 
and qualitative researchers is minimized. This method can be inter-
preted as an elaborated version of triangulation (Denzin, 1970), 
which follows the idea of corroborating a result by obtaining it with 
different methods. 
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4.7  Conclusions 

 
We started with the discussion of the most important paradigm of 
quantitative foresight: the concept of quantitative dynamic modeling. 
Its promises, limitations, and chances were elaborated. From the 
limitations, the importance of alternative, inter alia qualitative meth-
ods, became clear. With respect to the chances, the transparency 
of the underlying assumptions and/or a long-standing, successful 
history of validation are identified. 
Obviously the approaches to foresight are necessarily too diverse to 
be subsumed under the nomologico-deductive concept. As one 
more satisfactory possibility to frame the broad field of foresight ac-
tivities, the systematization of Kreibich (2006) was adopted and – 
for illustration – applied to the “great transition” study of SEI. It oc-
curred that – at first sight – in this study the explorative empirical-
analytical (i) and the planning approach (iii) were used. Closer in-
spection showed that also normative-intuitive aspects (ii) played an 
important role. So, only one of the four approaches, the communi-
cative-participative approach was definitely not used in this study. 
Quantitative methods were mainly used in approach (i) and to some 
extent in (iii). For approach (ii), quantitative methods are clearly less 
appropriate, while they may have a role in the communicative-
participative approach.  
After a description of the important properties of quantitative and 
qualitative data and methods, a hierarchy of integration depth of the 
“two cultures” was identified: the most superficial way is the collec-
tion of qualitative and quantitative “black box” results gained by dif-
ferent members of the foresight activity – the danger of unrecog-
nized inconsistencies in the basic assumptions leading to the 
respective results is obvious. Then, for a somewhat deeper integra-
tion, two classes of “interface-methods” were suggested: the very 
fast alternating application of qualitative and quantitative steps (e.g. 
Luna-Reyes and Andersen, 2003) and the use of variable-oriented 
methods working with data on weaker than ratio scale.   
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As a very promising example for the latter interface-methods the 
system analysis with ordinal variables was presented in more detail. 
It occurs that models (and projections) constructed with this method 
fulfill the above-mentioned precondition of transparency for all 
members of the foresight activity and allows us to map the uncer-
tainty or ambiguity of assumptions, of course resulting in possibly 
very weak and ambiguous projections. In general, this example 
shows that there are current developments within mathematical sys-
tems theory which concentrate more on uncertainties in the system 
definition and, with respect to projections, more on corridors than on 
trajectories. This paper tried to show that this offers the chance of 
deeper integration of quantitative and qualitative methods in fore-
sight activities. 
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